

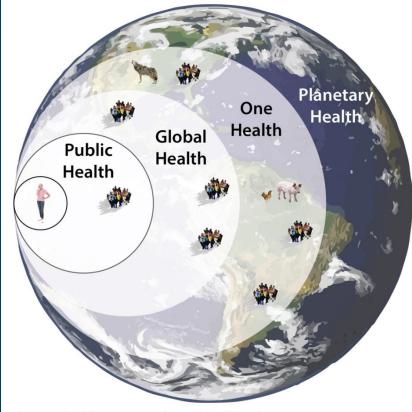
The Role of Food Processing in Achieving Sustainable and Nutritious Food Systems

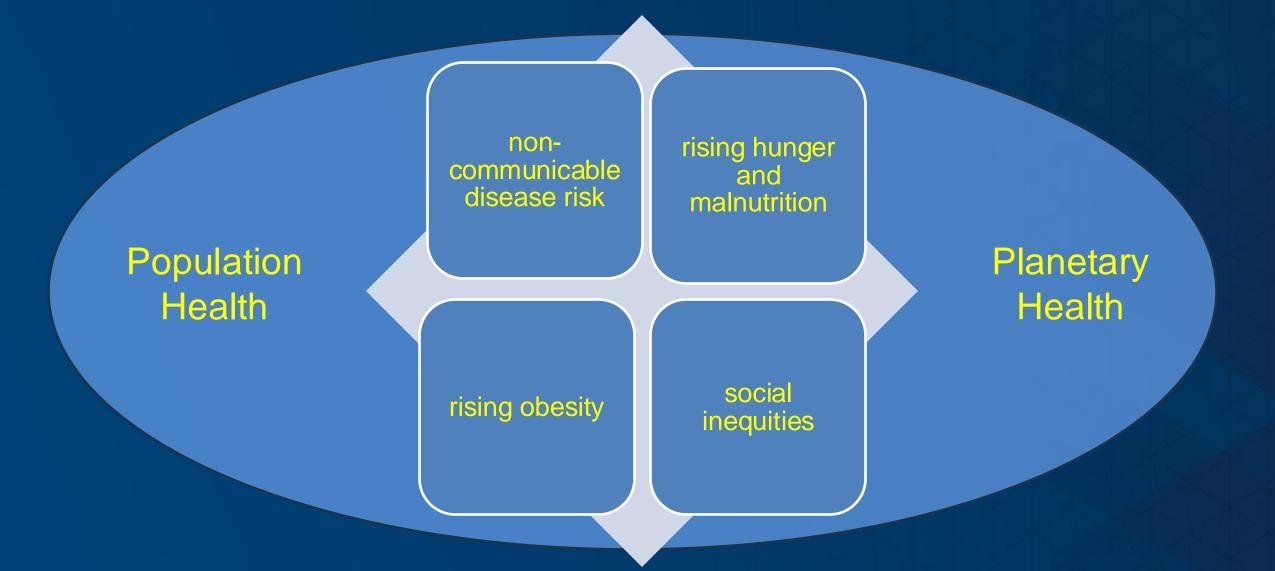
Eileen Gibney

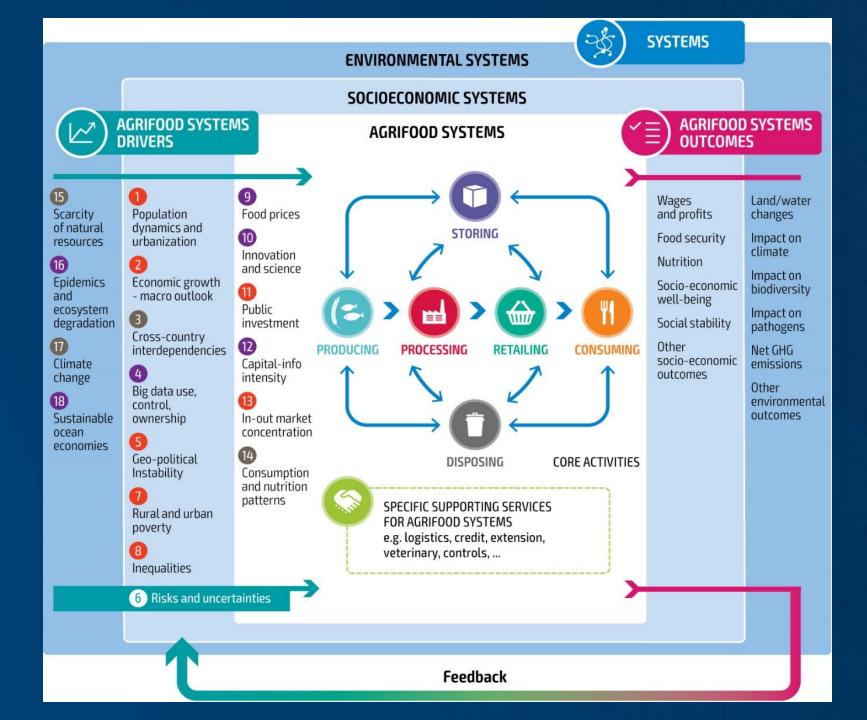
No central governance

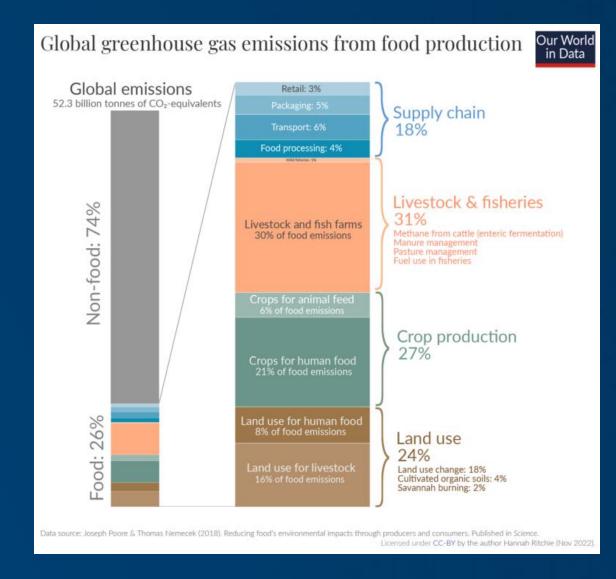
Transformation needs multistakeholder engagement

Radical transformation needed


TRIPLE BURDEN OF MALNUTRITION


25% OVERWEIGHT



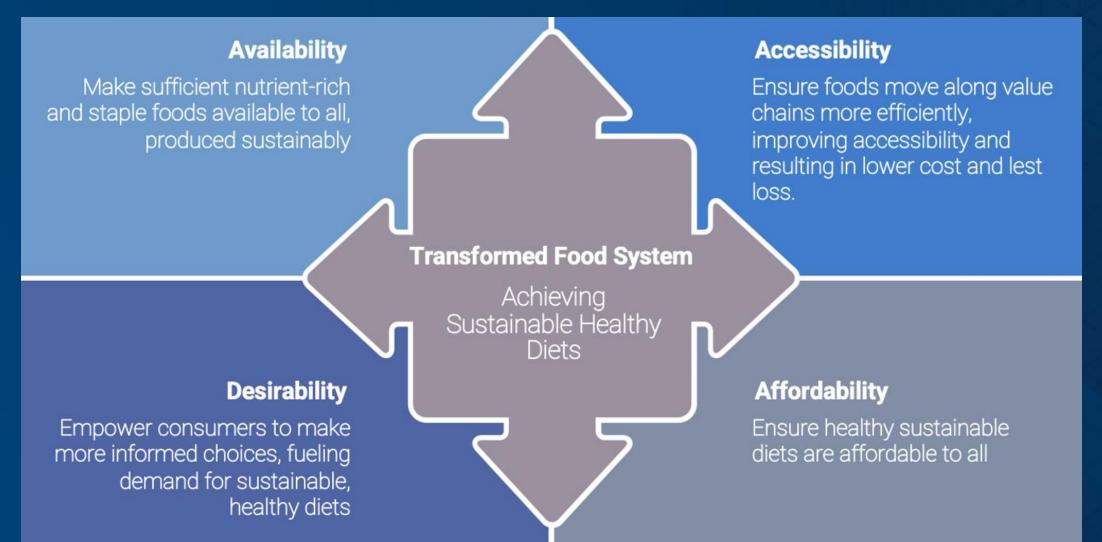

Planetary health recognizes the health of the planet as a system. ERIC MARTY

How does food impact the environment?

How does food impact the environment?

20% of emissions

80% of emissions


• •

UCD Institute of Food and Health

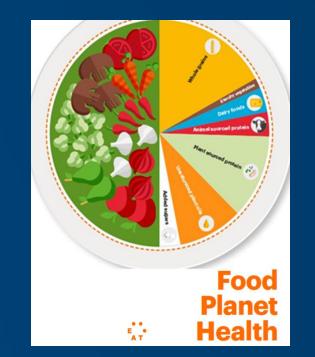
Adapted from Webb et al. "The urgency of food system transformation is now irrefutable." *Nature Food* 1.10 (2020): 584-585.

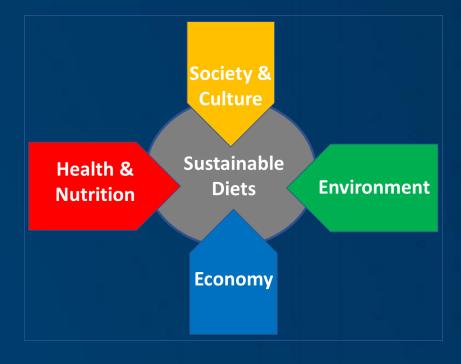
• Sustainable Diets....

What is a healthy and sustainable diet? What needs to change?

Diet-related environmental impact

- Beef, lamb
 - Shellfish
 - Dairy products
 - Other meats

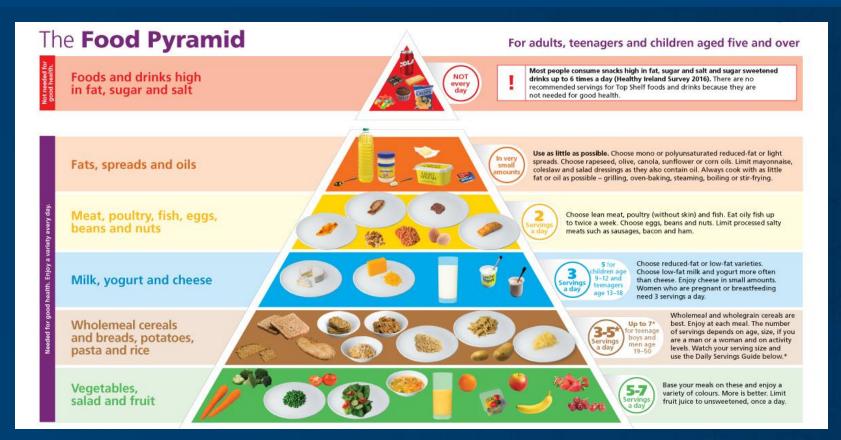

- Vegetables
- Fruits
- Beans, peas, lentils



UCD Institute of Food and Health

UN FAO

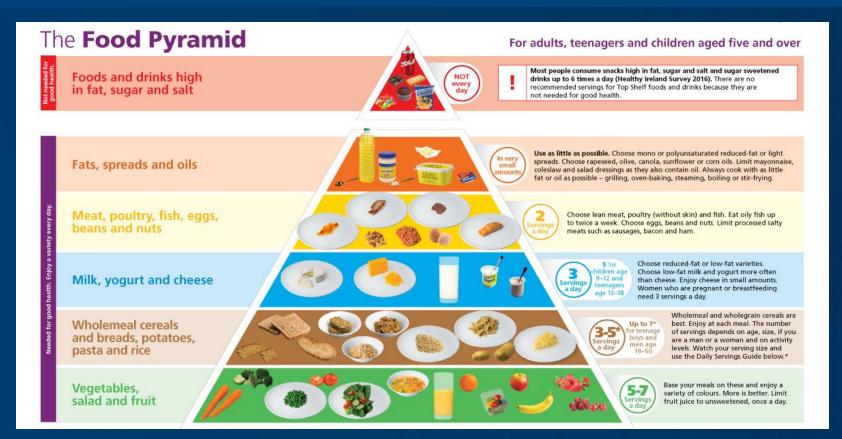
- low environmental impacts
- nutrition security and to healthy life
- culturally acceptable, accessible
- economically fair and affordable


Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A. and Jonell, M., 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. *The lancet*, *393*(10170), pp.447-492.

Sustainable dietary guidelines

				Country/Org	anization				
Food Group	FAO	BDA	Denmark	Germany	Sweden	Qatar	Canada	Brazil	Netherlands
Whole grains Tubers/starchy vegetal	bles 1		Choose whole grains	Opt for whole grains	Pick wholemeal	Choose whole grain	Consume regularly	Opt for whole	4-5 servings daily
Vegetables (all)	-	lar and ndant	Increase	3 servings a day	Eat 'lots'	3-5 servings/day	"Plenty"/half of plate	Consume regularly	Plenty and seasonal if possible (250 g)
Fruit		ndant	increase	2 servings a day	Eat 'lots'	2-4 servings/day	"Plenty"/half of plate	Consume regularly	>2 servings and seasonal if possible
Dairy	Moderate	Moderate	Pick low fat	Daily	Choose low-fat	Daily of skimmed/low fat	Low-fat		2 dairy servings and 40 g cheese
Animal protein		Reduce	Eat less	300-600 g/week					
Red meat	Small	70 g/day			<500 g/week	2			
Processed meat	Small	Avoid				Avoid / Do i	not consum	e regularly	Reduce
Pork	Small								
Poultry	Moderate					Choose skinless or lean			
Eggs	Moderate								
Fish	Moderate	From sustainabl sources	e Choose more	1-2x per week	2-3x per week	2x per week			Eat sustainably
Plant protein	Regular ar	nd abundan	t / Increase / C	hoose			Choose more often than animal sources	Choose unprocessed, plant proteins	Includes vegetarian alternatives
Legumes	30.00					Eat daily			Increase
Nuts		mo	re						25g unsalted/day
Fat			Choose vegetable oils		Pick healthier/ unsaturated			Limit	<40 g per day
Saturated							<10% energy intake		
Added sugar		Avoid	Eat less	Avoid	Avoid	Reduce and avoid	<10% energy intake	Limit	Reduce
High salt/fat foods		Avoid	Eat less	Avoid	Avoid	Reduce and avoid	Avoid eating regularly	Limit	Reduce

Davies, KP, Gibney, ER, O'Sullivan, AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? *J Hum Nutr Diet*. 2023; 1–12. <u>https://doi.org/10.1111/jhn.13218</u>



To eliminate all nutrient deficiencies

To optimize nutrient intake to minimize NCD Food must be Available * Affordable* Acceptable

To eliminate all nutrient deficiencies

To optimize nutrient intake to minimize NCD Food must be Available * Affordable* Acceptable Table 1. Summary of micronutrient constraints identified as limiting (included in the optimized diet at the level defined in the constraint) in diet optimization studies.

	Minerals				Vitamins										
Study	Fe	Na	Zn	Ca	Ι	Se	К	Mg	Α	С	B ₁₂	D	B_6	B ₂	B ₉
Kesse-Guyot et al. [56]	√ 1	\checkmark	√1	_	_	_	_	_	_	✓	_		_	_	_
Kesse-Guyot et al. [59]	√ 1	\checkmark	√ 1	_	_	_	_	_	_	_	_		_	_	_
Salome et al. [60]	√ 1	\checkmark	√ 1	_	\checkmark	_	_	_	\checkmark	\checkmark	\checkmark		\checkmark	_	_
Fouillet et al. [61]	√ 1	\checkmark	_1	\checkmark	\checkmark	_	_	_	\checkmark	_	\checkmark		_	\checkmark	_
Dussiot et al. [62]	√ 1	\checkmark	√ 1	_	\checkmark	_	\checkmark	_	\checkmark	\checkmark	_		_	_	_
Vieux et al. [63]	√ ²		√ ²	\checkmark	\checkmark	_		\checkmark	_	_	_	\checkmark	_	_	_
Dussiot et al. [64]	_1	\checkmark	_1	_	\checkmark	_	_	_	\checkmark	\checkmark	_		_	_	_
Sobhani et al. [71]	_	\checkmark	_	\checkmark				_	\checkmark	\checkmark	\checkmark		\checkmark	_	\checkmark
Eustachio Colombo et al. [53]	√3	\checkmark	_	\checkmark	\checkmark	\checkmark	_	_	\checkmark	_	_	\checkmark	_	_	_
Nordman et al. [54]	\checkmark		_	\checkmark	_	\checkmark	_	_	_	_	_		_	_	_
Ferrari et al. [55]	\checkmark		\checkmark	\checkmark							_				
Verly-Jr et al. [72]	_		_	\checkmark			\checkmark	_	_	_	_		_	_	_
Tompa et al. [58]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	_	_	_	\checkmark	\checkmark	_	_	_
Total (12)	10	9	7	8	6	2	3	1	6	5	4	3	2	1	1

Key: \checkmark , limiting micronutrient; -, non-limiting micronutrient included as a constraint.

¹Bioavaiable intakes.

²The iron constraint assumed high iron losses through menstruation for females under 50 years, and the zinc constraint was reported to be appropriate for the levels of phytate.

³Intake based on increased DRV for iron for plant-based diets.

Abbreviations: Ca, calcium; Fe, iron; I, iodine; K, potassium; Mg, magnesium; Na, sodium; Se, selenium; Zn, zinc.

Table 1. Summary of micronutrient constraints identified as limiting (included in the optimized diet at the level defined in the constraint) in diet optimization studies.

		Minerals						Vitamins							
Study	Fe	Na	Zn	Ca	Ι	Se	К	Mg	Α	С	B ₁₂	D	B ₆	B ₂	B ₉
Total (12)	10	9	7	8	6	2	3	1	6	5	4	3	2	1	1

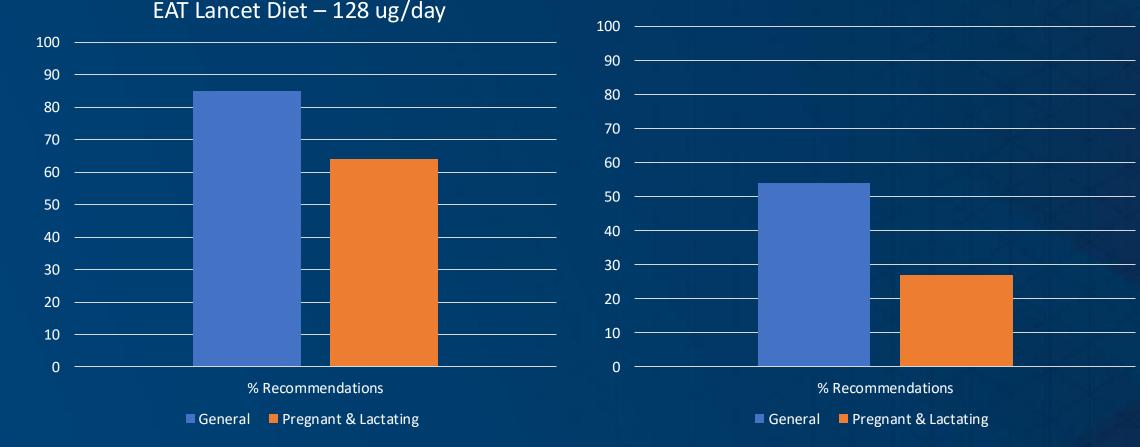
lodine

Nicol K, Nugent AP, Woodside JV, Hart KH, Bath SC. Iodine and plant-based diets: a narrative review and calculation of iodine content. Br J Nutr. 2023 Aug 25:1-11. doi: 10.1017/S0007114523001873.

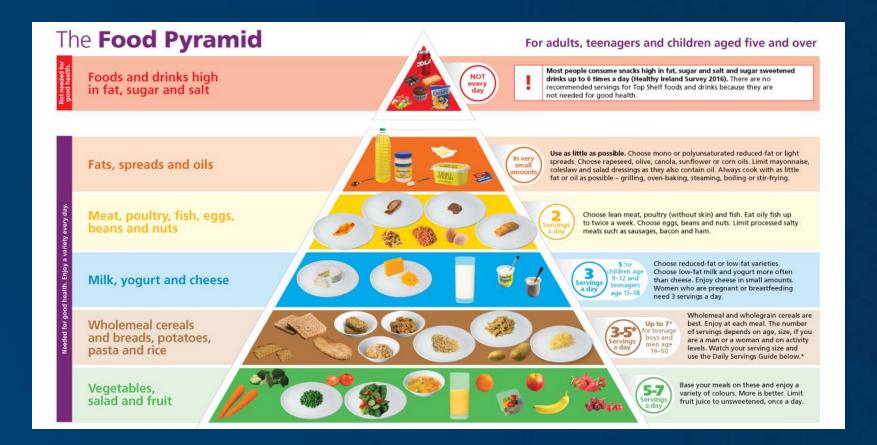
Accepted manuscript Iodine and plant-ba calculation of iodine Published online by Cambridge University K. Nicol (), A.P. Nugent, J.V. Woodside ()	Press: 25 August 2023	nd author details 〜				
	Milk/dairy products (%)	Contrib Fish (%)	oution to total io Egg (%)	dine intake Meat (%)	Total animal products (%)	lodised salt policy
Belgium Denmark Finland France Iceland Ireland The Netherlands Norway Spain UK	14 30 37 21 30 53 15 36 12 34	7 7 10 13 47 6 4 21 32 10	0 2 4 4 2 6 2 5 13 7	7 1 13 5 3 4 3 3 5 10	28 40 64 43 82 58 24 65 62 61	> M > > N N > > > N

Nicol K, Nugent AP, Woodside JV, Hart KH, Bath SC. Iodine and plant-based diets: a narrative review and calculation of iodine content. Br J Nutr. 2023 Aug 25:1-11. doi: 10.1017/S0007114523001873.

Accepted manuscript


Iodine and plant-based diets – a narrative review and calculation of iodine content

Published online by Cambridge University Press: 25 August 2023


K. Nicol 🝺, A.P. Nugent, J.V. Woodside 🝺, K. H. Hart and S.C. Bath 🝺

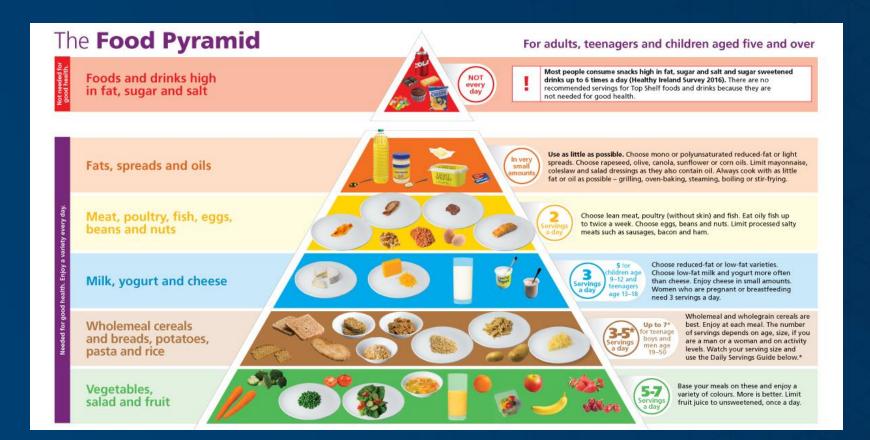
Show author details \sim

EAT-Lancet reference diet + Milk replaced with unfortified plant-based alternatives – 54ug/day

Nicol K, Nugent AP, Woodside JV, Hart KH, Bath SC. Iodine and plant-based diets: a narrative review and calculation of iodine content. Br J Nutr. 2023 Aug 25:1-11. doi: 10.1017/S0007114523001873.

To eliminate all nutrient deficiencies

To optimize nutrient intake to minimize NCD

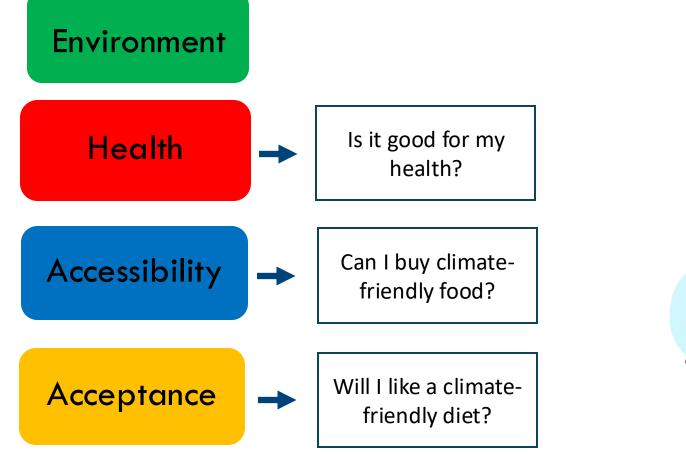

Food must be Available * Affordable* Acceptable

	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	p-trend
Cardiovascular	disease				\longrightarrow	
Cases	2104	2068	1964	1937	1758	
Person-years	904156	908 271	909118	910133	910 302	
Model 1	1 (ref)	0.90 (0.85–0.96)	0.81 (0.76–0.87)	0.77 (0.72–0.82)	0.67 (0.63–0.71)	<0.0001
Model 2	1 (ref)	0.96 (0.91–1.03)	0.91 (0.85–0.97)	0.89 (0.84–0.95)	0.83 (0.78–0.89)	<0.0001
Coronary heart	: disease					
Cases	1202	1150	1152	1064	931	
Person-years	904998	909139	909 919	910 989	911064	
Model 1	1 (ref)	0.88 (0.81–0.96)	0.84 (0.78–0.92)	0.75 (0.69–0.82)	0.63 (0.58–0.69)	<0.0001
Model 2	ref)	0.95 (0.88–1.04)	0.96 (0.88–1.04)	0.89 (0.81–0.97)	0.81 (0.74–0.88)	<0.0001
Stroke						
Cases	954	970	854	914	874	
Person-years	905213	909314	910157	911063	911087	
Model 1	1 (ref)	0.92 (0.85–1.01)	0.77 (0.70–0.84)	0.79 (0.72–0.87)	0.72 (0.66–0.79)	<0.0001
Model 2	1 (ref)	0.98 (0.89–1.07)	0.84 (0.77–0.93)	0.89 (0.81–0.98)	0.86 (0.78–0.95)	0.0004
Ischaemic strol	ke					
Cases	459	519	427	495	437	
Person-years	905 671	909743	910 576	911 459	911490	
Model 1	1 (ref)	1.02 (0.90–1.15)	0.78 (0.69–0.90)	0.87 (0.76–0.98)	0.73 (0.64–0.83)	<0.0001
Model 2	1 (ref)	1.06 (0.93–1.20)	0.85 (0.74–0.97)	0.96 (0.84–1.10)	0.86 (0.75–0.99)	0.01

Data are number of cases, number of person-years, or hazard ratios (95% CI). Model 1: inverse variance-weighted fixed effects meta-analysis of age-adjusted cohort-specific hazard ratios. Model 2: additionally adjusted for energy intake, alcohol (0, >0 to <5, 5 to <10, 10 to <15, or \ge 15 g/d), multivitamin use (yes or no), aspirin use (yes or no), smoking (never smoker, past smoker, current smoker 1–14 cigarettes per day, current smoker 15–24 cigarettes per day, or current smoker \ge 24 cigarettes per day), physical activity (<3, 3 to <9, 9 to <18, 18 to 27, 27 to <42, or \ge 42 total metabolic equivalent of task per week), BMI (<21, 21 to <23, 23 to <25, 25 to <27, 27 to <30, 30 to <33, 33 to <35, 35 to <40, or \ge 40 kg/m²), marital status (never married, married, widowed, or divorced or separated), family history of type 2 diabetes (yes or no), family history of cardiovascular disease (yes or no), postmenopausal hormone use (premenopausal, postmenopausal never used, postmenopausal currently using, or postmenopausal past use), oral contraceptive use (NHS II only; current, past, or never used), race (White or not White), hypertension (yes or no), hypercholesterolaemia (yes or no), and incident diabetes (yes or no).

Table 3: Association between Planetary Health Diet Index and incident cardiovascular disease, coronary heart disease, and stroke in meta-analysis of the Nurses' Health Study I, Nurses' Health Study II, and Health Profssionals Follow-up Study

Sawicki, C.M., Ramesh, G., Bui, L., Nair, N.K., Hu, F.B., Rimm, E.B., Stampfer, M.J., Willett, W.C. and Bhupathiraju, S.N., 2024. Planetary health diet and cardiovascular disease: results from three large prospective cohort studies in the USA. *The Lancet Planetary Health*, *8*(9), pp.e666-e674.



To eliminate all nutrient deficiencies

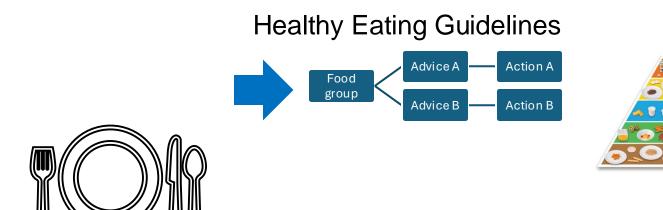
To optimize nutrient intake to minimize NCD Food must be Available * Affordable* Acceptable

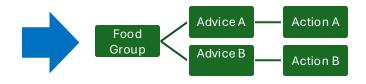
Building a more sustainable diet

() SuHeGuide

Need for population change – healthy & sustainable diet – lack of data on nutritional status

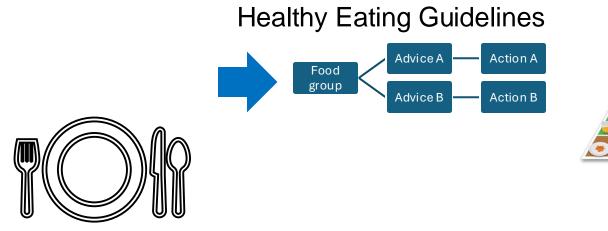
Consider use of PN strategies to support behavioural change within population health


Multicentre RCT examining impact of PN strategies for healthy sustainable diets on nutrient intake and status


MyPlanetDiet Dietary Intervention

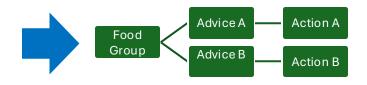
- "Meat, poultry, fish, eggs, beans and nuts group"
- Meat serving = 50-75g
- No more than one red meat per day

Sustainable Healthy Diet



- 3 servings meat per week
- Meat serving = 140g
- No more than 1 red meat/week
- 1 serving plant protein per day
- 1 serving nuts and seeds

Davies KP, Gibney ER, O'Sullivan AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? J Hum Nutr Diet. 2023 Dec;36(6):2256-2267. Davies KP, Gibney ER, Leonard UM, Lindberg L, Woodside JV, Kiely ME, Nugent AP, Arranz E, Conway MC, McCarthy SN, O'Sullivan AM. Developing and testing personalised nutrition feedback for more sustainable healthy diets: the MyPlanetDiet randomised controlled trial protocol. Eur J Nutr. 2024


MyPlanetDiet Dietary Intervention

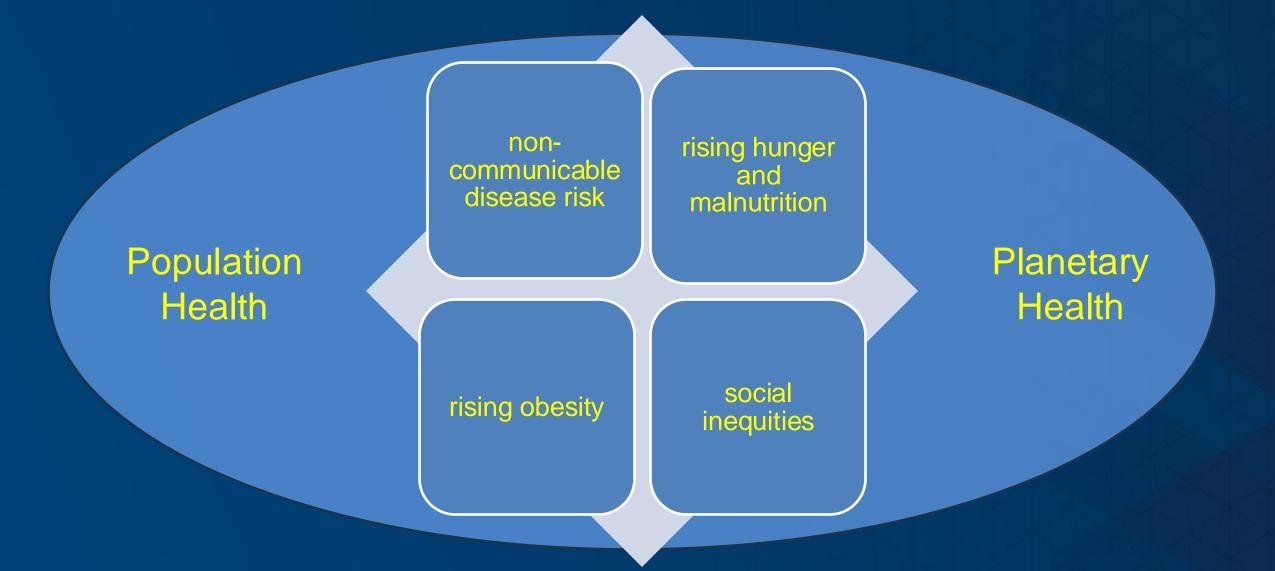
• 2 servings per day

• No more than one red meat per day

Sustainable Healthy Diet

• <u>3 servings meat per week</u>

- 1 serving plant protein per day
- 1 serving nuts and seeds


Davies KP, Gibney ER, O'Sullivan AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? J Hum Nutr Diet. 2023 Dec;36(6):2256-2267. Davies KP, Gibney ER, Leonard UM, Lindberg L, Woodside JV, Kiely ME, Nugent AP, Arranz E, Conway MC, McCarthy SN, O'Sullivan AM. Developing and testing personalised nutrition feedback for more sustainable healthy diets: the MyPlanetDiet randomised controlled trial protocol. Eur J Nutr. 2024

- Personalised General Healthy v Sustainable Healthy Eating advice
- n=360, 18-65 males/females
- 12 week HEG v SHD
- 1' outcome Dietary intake, GHGEs
- Nutrient status, Health biomarkers

Davies KP, Gibney ER, O'Sullivan AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? J Hum Nutr Diet. 2023 Dec;36(6):2256-2267. Davies KP, Gibney ER, Leonard UM, Lindberg L, Woodside JV, Kiely ME, Nugent AP, Arranz E, Conway MC, McCarthy SN, O'Sullivan AM. Developing and testing personalised nutrition feedback for more sustainable healthy diets: the MyPlanetDiet randomised controlled trial protocol. Eur J Nutr. 2024

• What do we mean by processed foods?

What is food processing? Link to sustainability and disease risk?

What is food processing?

simple complex washing shredding peeling drying slicing juicing freezing extruding brining tumbling fermenting canning centrifuging filtering refrigerating pasteurizing sterilizing

Why? Positive effects.....

Increased food availability	Convenience	Variety (special requirements – gluten free, low sugar)	Safety
Palatable	Increasing nutritional quality	Fortification	Affordability

Food processing Classification Systems

International Agency for Research on Cancer

Article Food Processing: Comparison of Different Food Classification Systems

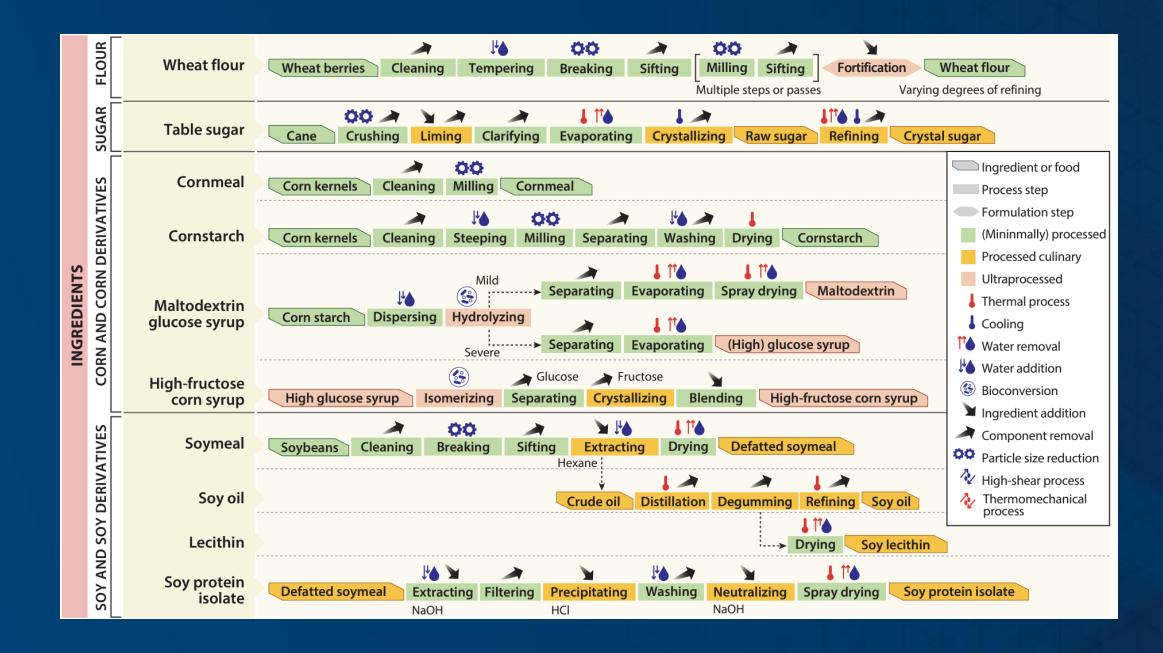
Taissa Pereira de Araújo ^{1,2,*}, Milena Miranda de Moraes ^{1,2}, Cláudia Afonso ^{1,2}, Cristina Santos ^{1,3} and Sara S. P. Rodrigues ^{1,2}

Classification Systems	Degree of Processing Groups							
Classification bystems	1	2	3	4				
IARC—Europe (2009)	Non Processed Food		Moderately PF	Highly PF				
NOVA—Brazil (2010, 2016)	Unprocessed food or Minimally PF	Processed culinary ingredients	Processed food	Ultra-processed food				
IFPRI—Guatemala (2011)	Unprocessed Food	Primary PF		Highly PF				
IFIC_USA (2012)	Minimally PF		FP for preser-vation	Prepared foods/meals				
IFIC—USA (2012)	Winning 11		Mixtures of combined ingredients	Ready-to-eat processed				
UNC—USA (2016)	Unprocessed food	Basic PF	Moderately PF	Highly PF				

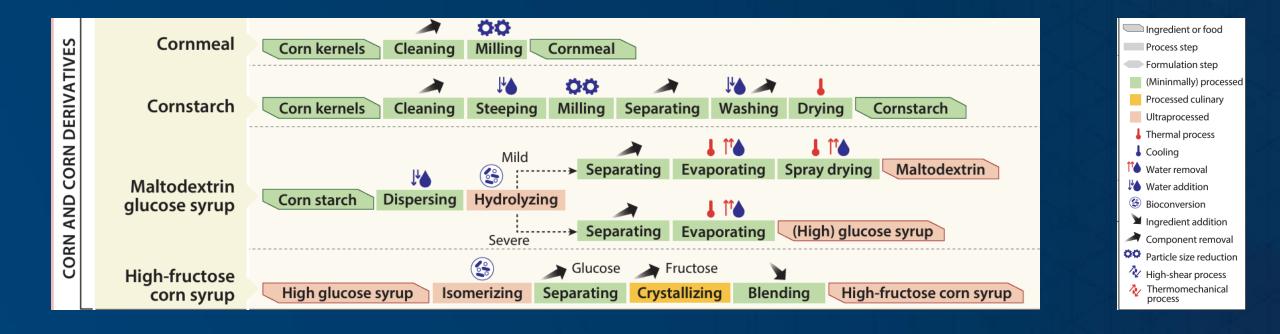
de Araújo TP, de Moraes MM, Afonso C, Santos C, Rodrigues SSP. Food Processing: Comparison of Different Food Classification Systems. *Nutrients*. 2022; 14(4):729. https://doi.org/10.3390/nu14040729

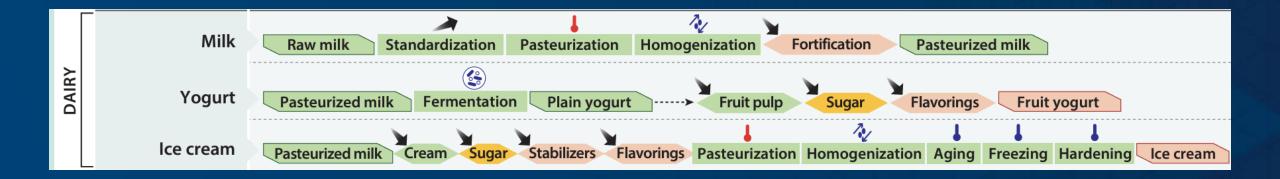
Article Food Processing: Comparison of Different Food Classification Systems

Taissa Pereira de Araújo ^{1,2,*}, Milena Miranda de Moraes ^{1,2}, Cláudia Afonso ^{1,2}, Cristina Santos ^{1,3} and Sara S. P. Rodrigues ^{1,2}


NOVA. IARC, IFPRI and UNC food classification systems (556 foods)

Discrepancy Range % of UPF Classification (DR)


Classification Systems	Degree of Processing Groups							
Chassification bystems	1	2	3	4				
IARC—Europe (2009)	Non Processed Food		Moderately PF	Highly PF				
NOVA—Brazil (2010, 2016)	Unprocessed food or Minimally PF	Processed culinary ingredients	Processed food	Ultra-processed food				
IFPRI—Guatemala (2011)	Unprocessed Food	Primary PF		Highly PF				
IFIC—USA (2012)	Minimally PF		FP for preser-vation	Prepared foods/meals				
IFIC—USA (2012)	Winning 11		Mixtures of combined ingredients	Ready-to-eat processed				
UNC—USA (2016)	Unprocessed food	Basic PF	Moderately PF	Highly PF				


IARC - 47.4% NOVA - 10.2% IFPRI - 16.7% IFIC - 17.7% UNC - 15.2%

de Araújo TP, de Moraes MM, Afonso C, Santos C, Rodrigues SSP. Food Processing: Comparison of Different Food Classification Systems. *Nutrients*. 2022; 14(4):729. https://doi.org/10.3390/nu14040729

Ubbink J, Levine AS. From Processed Foods to Ultraprocessed Foods: Evolution of an Industry Model and Impact on Dietary Quality, Health, and Society. Annu Rev Food Sci Technol. 2024 Nov 13. doi: 10.1146/annurev-food-111523-122028. Epub ahead of print. PMID: 39536090.xc

Ubbink J, Levine AS. From Processed Foods to Ultraprocessed Foods: Evolution of an Industry Model and Impact on Dietary Quality, Health, and Society. Annu Rev Food Sci Technol. 2024 Nov 13. doi: 10.1146/annurev-food-111523-122028. Epub ahead of print. PMID: 39536090.xc Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study

Reynalda Cordova • Vivian Viallon • Emma Fontvieille • Laia Peruchet-Noray • Anna Jansana • Karl-Heinz Wagner • et al. Show all authors

Open Access • Published: November 13, 2023 • DOI: https://doi.org/10.1016/j.lanepe.2023.100771

The Lancet Regional Health - Europe 2023;**=:** 100771 Published Online XXX https://doi.org/10. 1016/j.lanepe.2023. 100771

Prospective cohort study N= 266,666 participants (60% women) free of cancer, cardiovascular disease, and type 2 diabetes at recruitment fr N=7 European countries in the EPIC study. Foods and drinks consumed in previous 12 months assessed at baseline by FFQ Classified according to their degree of processing using Nova classification.

Multistate modelling based on Cox regression to estimate cause-specific hazard ratios (HR) and their 95% confidence intervals (CI) for associations of **total and subgroups of UPFs with the risk of multimorbidity of cancer and cardiometabolic diseases.**

Brazil (2010, 2016)	Unprocessed food or Minimally PF	Processed culinary ingredients	Processed food	Ultra-processed fo	od	
			Forest plot of Ha			
	Transitions			Cases	PY	HR(95% CI)
	Baseline to Ca	ncer	1 ∎−1	21 917	2 740 014	1.01 (1.00,1.03)
		1	→			1.01 (1.00,1.03)
	Baseline to CV	D	⊢∎→	10 939	2 740 014	1.06 (1.04, 1.08)
		1	⊢♦ −1			1.05 (1.03, 1.07)
	Baseline to T2	כ	1 8 -1	11 322	2 740 014	1.11 (1.10, 1.13)
		i	⊢ ⊕ I			1.07 (1.05, 1.08)
	Cancer to Multi	morbidity	·	1289	81 662	1.05 (0.99, 1.11)
		1	⊢			1.03 (0.97, 1.09)
	CVD to Multime	orbidity	H	1341	44 533	1.02 (0.97, 1.08)
			⊢			1.01 (0.96, 1.07)
	T2D to Multimo	orbidity	⊢ ∎ - (1831	63 142	1.02 (0.98, 1.06)
			—			1.02 (0.98, 1.06)
	Baseline to Mu	ltimorbidity		4461	2 947 281	1.09 (1.05, 1.12)
			—			1.06 (1.03, 1.09)
		0.9 Hazard Ratio per 1 S	I I 1 1.1 D increase in ultra–pro	l 1.2 cessed foods (95% Cl)	

Cordova R, Viallon V, Fontvieille E, Peruchet-Noray L, Jansana A, Wagner K-H, et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study *The Lancet Regional Health – Europe*, published online 13 November 2023;

NOVA—Brazil (2010, 2016)	Unprocessed food or Minimally PF	Processed culinary ingredients	Processed food	Ultra	a-processed food	
	Forest plot of Hazard Ratios					
	Subgroups			HR(95% CI)		
	Total UPF intake				⊢∎-1	1.09 (1.05,1.12)
	Ultra-processed br	eads and cereals		H-		0.97 (0.94,1.00)
	Sauces, spreads, a	nd condiments		-	-	1.03 (1.00, 1.06)
	Sweets and desserts				-	0.99 (0.95, 1.03)
	Savory snacks					1.00 (0.96, 1.04)
	Plant-based altern	atives	H	-	4	0.97 (0.91, 1.02)
	Animal-based proc	lucts				1.09 (1.05, 1.12)
	Ready-to-eat/heat	mixed dishes			н	1.01 (0.98, 1.04)
	Artificially and suga	r-sweetened beve	rages		H B -1	1.09 (1.06,1.12)
	Other ultra-process	sed foods			н	1.01 (0.97,1.05)
		Hazard Rati	0.8 o per 1 SD (95% (ו 1 CI) – Sı	ا 1. ubgroups of ultr	2 a-processed foods

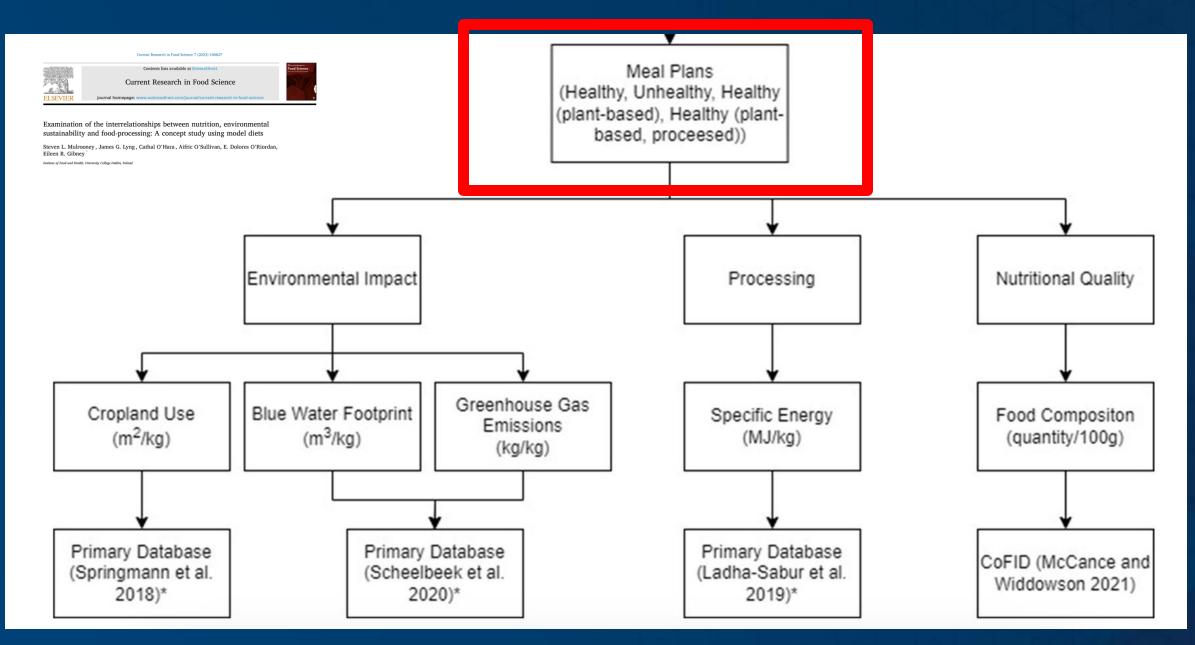
Cordova R, Viallon V, Fontvieille E, Peruchet-Noray L, Jansana A, Wagner K-H, et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study *The Lancet Regional Health – Europe*, published online 13 November 2023;

Impact of processing on environment and disease risk....

Different levels of ultra-processed food and beverage consumption and associations with environmental sustainability and **all-cause mortality** in EPIC-NL

UPFD: Ultra-processed food & drink, UPF: Ultra-processed food, UPD: Ultra-processed drink

	Relative risk of all cause mortality				
	Q1 (low)	Q2	Q3	Q4 (High)	
UPFD	1.00	0.97	0.99	1.17	
UPF	1.00	0.93	0.91	1.06	
UPD	1.00	0.98	1.00	1.16	


Vellinga RE, van den Boomgaard I, M A Boer J, van der Schouw YT, Harbers MC, Verschuren WMM, van 't Veer P, H M Temme E, Biesbroek S. Different Levels of Ultraprocessed Food and Beverage Consumption and Associations with Environmental Sustainability and All-cause Mortality in EPIC-NL. Am J Clin Nutr. 2023 Jul;118(1):103-113. doi: 10.1016/j.ajcnut.2023.05.021. Epub 2023 May 18. PMID: 37207984.

Different levels of ultra-processed food and beverage consumption and associations with environmental sustainability and **all-cause mortality** in EPIC-NL

	% difference Q1 to Q4 of consumption		
	UPFD	UPF	UPD
GHG emission	+1.9	-7.7	+5.8
Blue water consumption	-4.0	-13.6	+3.2
Land use	-0.9	-3.0	+0.4
Terrestrial acidification	-0.9	-7.2	+2.9
Fresh water eutrophication	+2.6	-5.3	+5.0
Marine water eutrophication	-1.5	-5.4	+1.2

Vellinga RE, van den Boomgaard I, M A Boer J, van der Schouw YT, Harbers MC, Verschuren WMM, van 't Veer P, H M Temme E, Biesbroek S. Different Levels of Ultraprocessed Food and Beverage Consumption and Associations with Environmental Sustainability and All-cause Mortality in EPIC-NL. Am J Clin Nutr. 2023 Jul;118(1):103-113. doi: 10.1016/j.ajcnut.2023.05.021. Epub 2023 May 18. PMID: 37207984.

Examination of the interrelationships between nutrition, environmental sustainability and food-processing: A concept study using model diets. Steven L Mulrooney, James G Lyng, Cathal O'Hara, Aifric O'Sullivan, E Dolores O'Riordan, Eileen R Gibney- Current Research in Food Science, 2023

	Healthy	Unhealthy	Healthy	Healthy
		(processed)	(plant-based - processed)	(plant-based)
AHEI Score	62	16	70	79
Processing specific energy (MJ/day)	5	8	17	5
Total # processes in diet per day	86	131	86	87
Average # processes / food item	4	6	5	4
Greenhouse Gas Emissions (kg/day)	5	5	3	3
Blue Water Footprint (m ³ /day)	0.3	0.2	0.2	0.2
Cropland Use (m ² /day)	6	5	11	14

Examination of the interrelationships between nutrition, environmental sustainability and food-processing: A concept study using model diets. SL Mulrooney, JG Lyng, C O'Hara, A O'Sullivan... - Current Research in Food Science, 2023

ORIGINAL CONTRIBUTION

The role of ultra-processed foods in plant-based diets: associations with human health and environmental sustainability

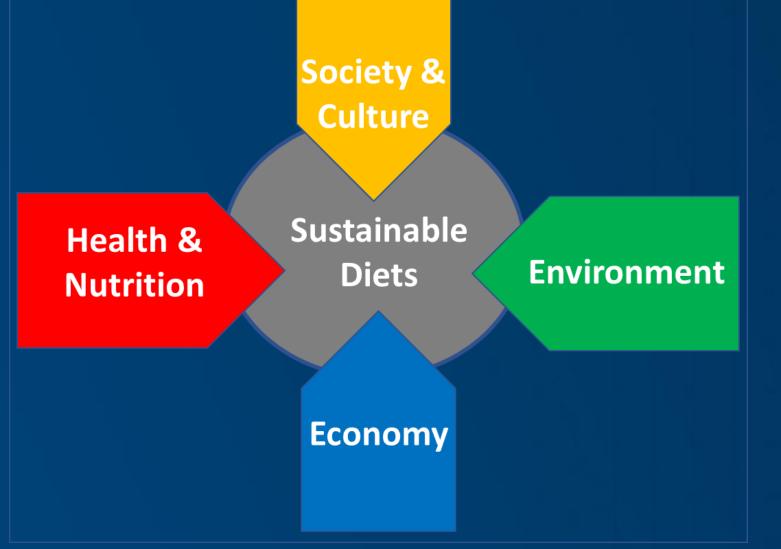
Merel C. Daas¹© · Reina E. Vellinga^{1,2} · Maria Gabriela M. Pinho³ · Jolanda M. A. Boer² · W. M. Monique Verschuren^{2,4} · Yvonne T. van der Schouw⁴ · Pieter van't Veer¹ · Sander Biesbroek¹

- Associations of UPF in healthful (hPDI) & unhealthful (uPDI) plant-based diets
- All-cause mortality, greenhouse gas emissions (GHGE), and blue water consumption (BWC).
- 35,030 participants (20–70 years; 74% females) EPIC-NL cohort, 1993 to 1997 through 2014.
- Cox proportional hazard and multiple linear regression models to estimate associations between quartiles of the PDI indices and UPF consumption.

	GHGE (Green House Gas Emissions)	BWC (Blue Water Consumption)
Lower UPF	1.4%	1.6
Higher Healthy Plant Diet Index	-7.4%	-9.6%
Lower UPF & Lower hPDI	-6.8%	-13.1%

	All-cause mortality (risk estimate)	
Lower UPF	0.98	-0.2%
Higher Healthy Plant Diet Index	0.86	-14%
Lower UPF & Lower hPDI	0.78	-22%

European Journal of Nutrition (2024) 63:2957–2973 https://doi.org/10.1007/s00394-024-03477-w

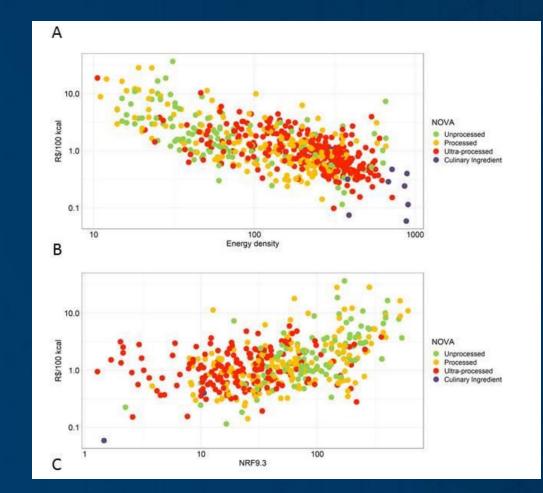

ORIGINAL CONTRIBUTION

The role of ultra-processed foods in plant-based diets: associations with human health and environmental sustainability

Merel C. Daas¹ · Reina E. Vellinga^{1,2} · Maria Gabriela M. Pinho³ · Jolanda M. A. Boer² · W. M. Monique Verschuren^{2,4} · Yvonne T. van der Schouw⁴ · Pieter van't Veer¹ · Sander Biesbroek¹

- Mortality risk and environmental impacts were mostly associated with the amount of plant-based foods and to a lesser extent UPF in the diet.
- Shifting to a more healthful plant-based diet could improve human health and reduce most aspects of environmental impact (GHGE, but not BWC) irrespective of UPF consumption.
- Results for unhealthy plant diet were inconclusive

UN FAO


- low environmental impacts
- nutrition security and to healthy life
- culturally acceptable, accessible
- economically fair and affordable

Affordable Nutrient Density in Brazil: Nutrient Profiling in Relation to Food Cost and NOVA Category Assignments

by Alfonso Mendoza-Velázquez ^{1,2} ^(D), Jonathan Lara-Arévalo ^{1,*} [∞] ^(D), Kennya Beatriz Siqueira ³, Mariano Guzmán-Rodríguez ² ^(D) and Adam Drewnowski ¹

Affordable nutrient density - low-cost and nutrient-rich foods.

- n = 591 Foods in Brazil
 - Nutrient Rich Food Index (NRF9.3)
 - Affordability
 - NOVA category
- Affordable Nutrient-rich foods included MPF processed foods (PF) and UPF.

Mendoza-Velázquez A, Lara-Arévalo J, Siqueira KB, Guzmán-Rodríguez M, Drewnowski A. Affordable Nutrient Density in Brazil: Nutrient Profiling in Relation to Food Cost and NOVA Category Assignments. *Nutrients*. 2022; 14(20):4256. https://doi.org/10.3390/nu14204256

Making Healthy, Sustainable Diets Accessible and Achievable: A New Framework for Assessing the Nutrition, Environmental, and Equity Impacts of Packaged Foods

David I Gustafson,¹ Eric A Decker,² Adam Drewnowski,³ Michael W Hamm,⁴ Jane Hwang,⁵ and Kathleen A Merrigan⁶

¹Adjunct Research Faculty, Biological Systems Engineering, Washington State Linkrenity, Pullman, Wd, USA, ²Dapartment of add Science, Linkrenity of Masachuzue Andhenst, Md, USA, ⁵Center for Public Health Mutrition, University of Washington, Sastut, Wu, VU, USA, ⁴Dapartment of Amounty Sustainability, Michigan State University, Lanking, MI, USA, ⁵Social Accountability International, New York, NY, USA; and ⁴Swette Center for Sustainable Food Systems, Arizona State University, Temper, AZ, USA.

SUSTAINABLE, NUTRITIOUS PACKAGED FOODS: GUIDING PRINCIPLES

Nutrition*

- Contributes positive food group(s)
 - FOR SNACKS: 8g whole grains; ¼ cup equivalent of fruits, vegetables or dairy; ¼ oz of nuts
- Contributes under-consumed nutrient(s)
 - FOR SNACKS: 10% DV potassium, fiber, vitamin D, calcium, iron, vitamin E, magnesium, etc.
- Includes whole food ingredients
 - o FOR SNACKS:
 - First ingredient is a whole food <u>AND</u>
 - Most ingredients (>50% by wt.) are whole foods
- Limits total and added sugar
 - FOR SNACKS: Meets NSSRI targets (by category)
- Limits saturated fat
 - FOR SNACKS: <10% of calories
- Limits sodium
 - FOR SNACKS: Meets FDA voluntary sodium reduction targets (by category)

Environment

SOURCING

- Is "made with organic" or contains ingredients sourced in a way that ...
 - Limits GHG emissions, moving to net zero
 - Limits synthetic chemicals/pesticides
 - o Supports downstream water quality
 - o Supports soil quality
 - o Promotes biodiversity

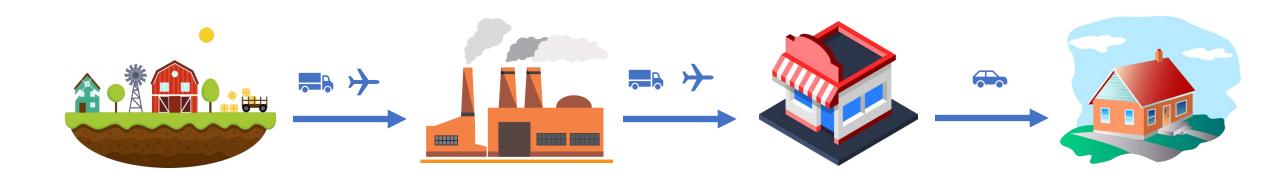
MANUFACTURING

- Leverages zero waste practices
 - Made in a facility following zero waste standards
- Uses eco-friendly packaging
 - o Packaging is recyclable, reusable or compostable
 - o It's accompanied by simple/visible consumer education
- Limits GHG emissions
 - Made using renewable energy

Equity

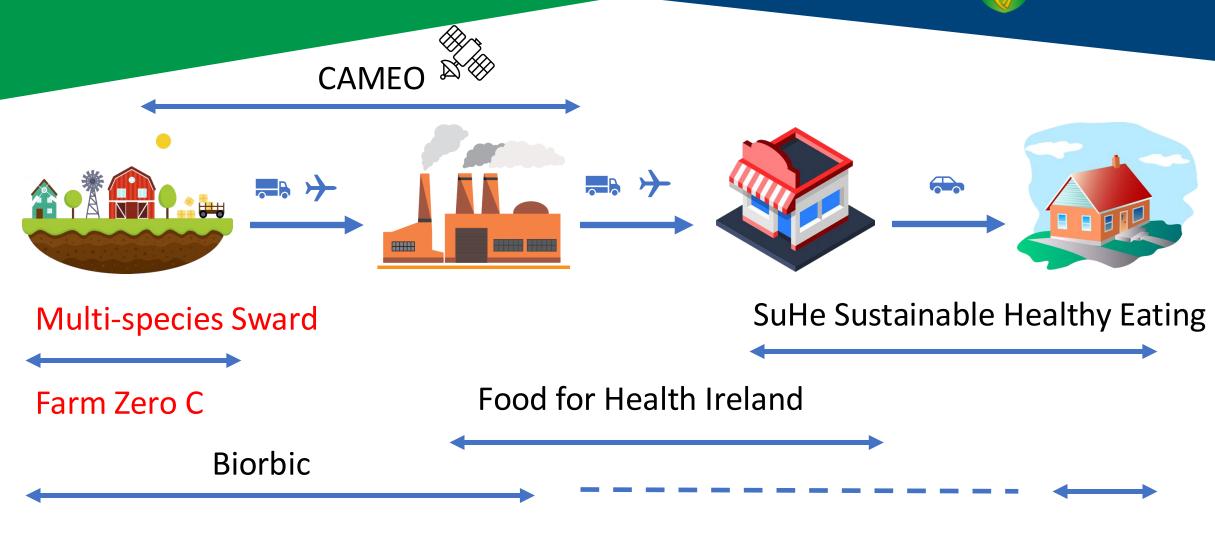
MANUFACTURING/SOURCING

- Is made while ensuring fair and healthy working conditions across the supply chain:
 - o Living wage and income
- o Safe working environment
- o No forced or child labor
- Freedom of association


PRODUCT/PROMOTION

- Delivers consumer-relevant value
- Has a desirable taste, texture and appearance
- Meets consumers' diverse lifestyle demands
 - <u>Examples</u>: portable, time saving, easy to prepare at all skill levels to help make healthy, sustainable eating achievable
- Clearly conveys product attributes and benefits with accessible marketing and labeling

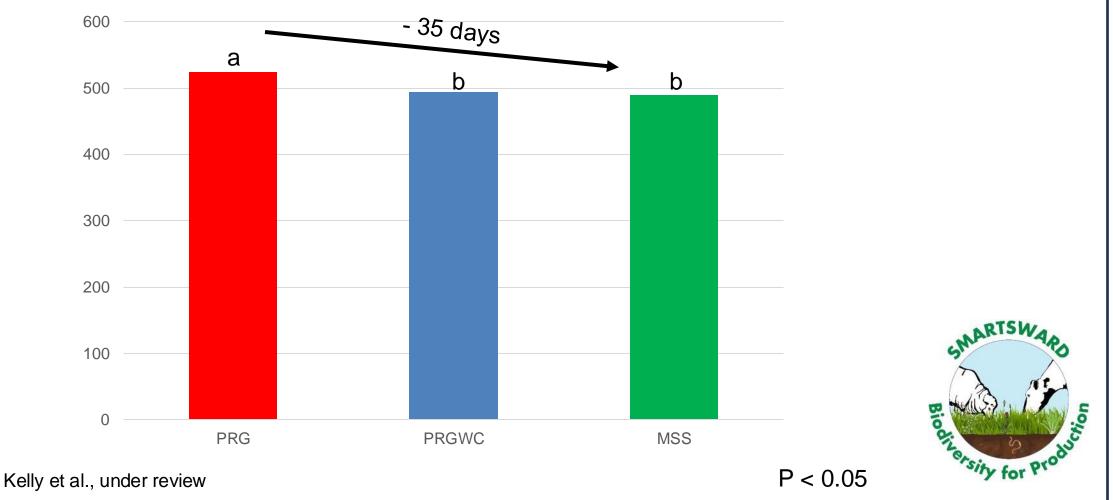
*Performance foods are exempt



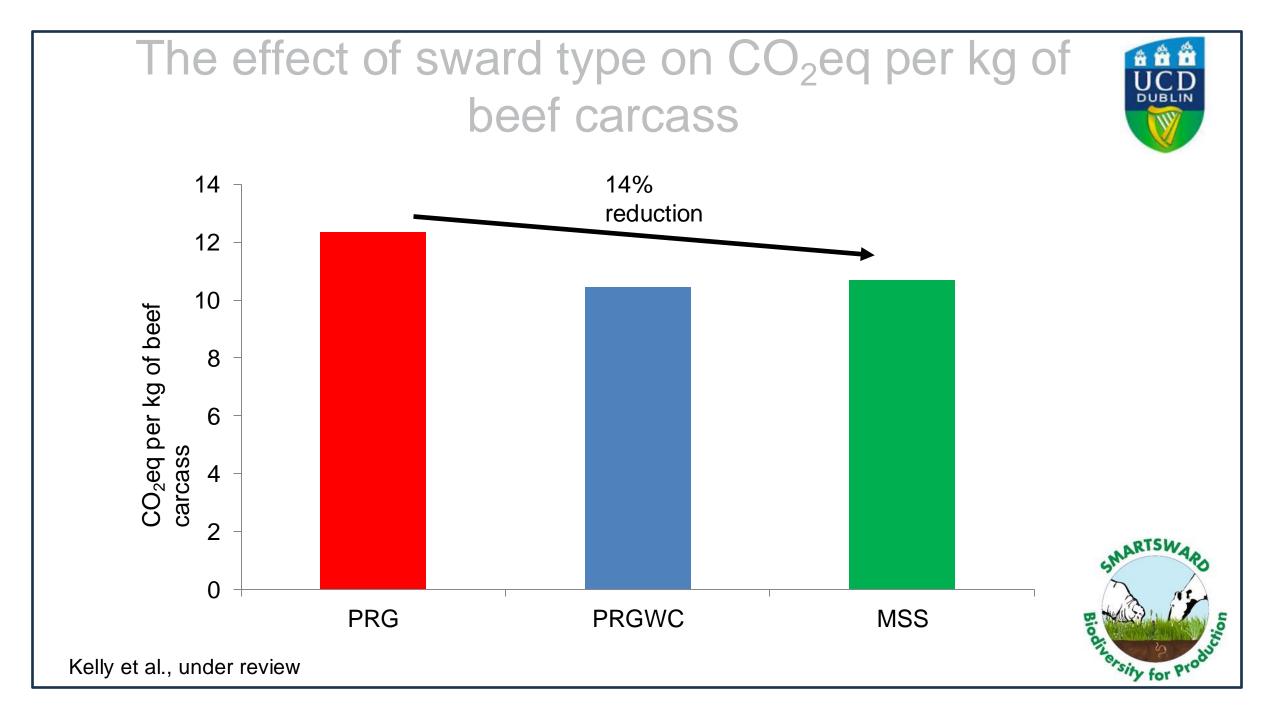
Co-Centre for Sustainable Food Systems

UCD Lyons Farm

Multi-species sward

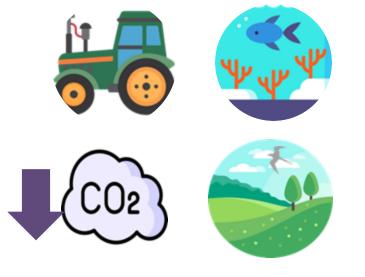


Helen Sheridan



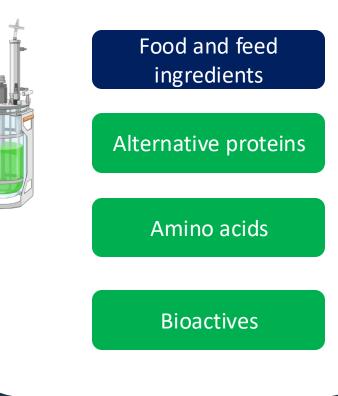
Tommy Boland

The impact of sward type on days required to reach target slaughter weight



Ke

BiOrbic and Food Research


Sustainable food production

Climate neutral Nature positive

Climate neutral operational systems

Biomanufacturing Biotechnology Precision fermentation

Food waste

Kevin O'Connor

Food waste Prevention Food waste Valorisation Sustainable food packaging

Farm Zero C Key Focus Areas

Life Cycle Assessment

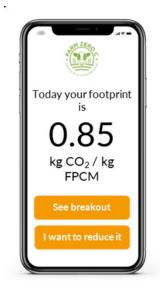
Animal Emissions

Breeding and Animal Health

Soil and Grassland

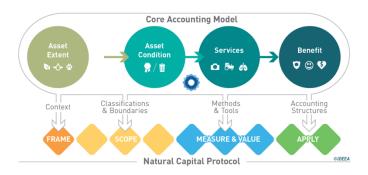
Renewable Energy

Green Biorefinery and Anaerobic Digestion


Biodiversity and Natural Capital Accounting

Water and Air Quality

bi@rbic



Kevin O'Connor

Life Cycle Assessment

Habitat Mapping Tool

Natural Capital Accounting

OUR ANBITION

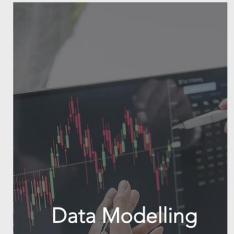
Develop innovative and transformative solutions for IOI

Position IOI as a global leader in research and innovation for positive and sustainable change in the transition to climate-neutrality by 2050

Place IOI as world leaders in food systems transformation, providing a model system with global reach

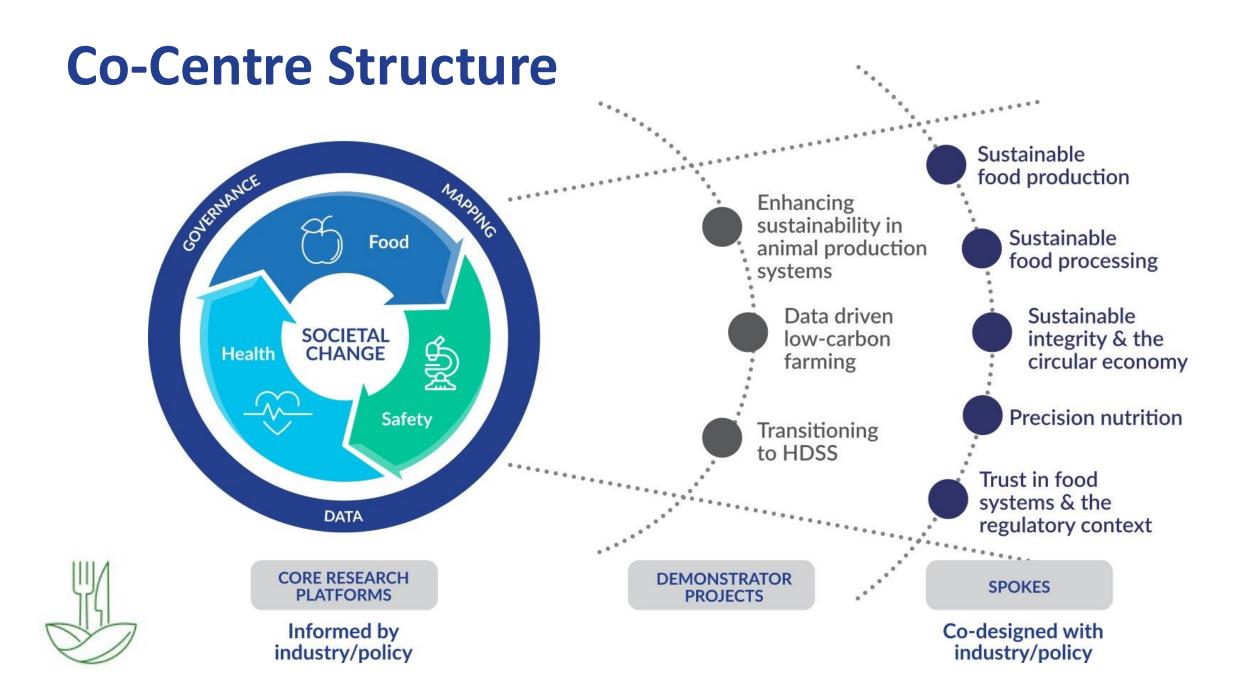
Food Safety

Develop novel technologies & approaches to enhance food safety and protect against emerging challenges


Sustainable Foods

Develop novel technologies & approaches to enhance ood safety and protect against emerging challenges

Health & Nutrition


Provide the evidencebase for the development of healthy diets from sustainable sources

Develop a framework to support federation, mapping and analysis of food system data

Integration of data to map the food system and undertake scenario modelling to realise improvements in food production, processing and consumption.

Future Food Systems

Healthier & more sustainable diets Improved health outcomes Food systems approach Processing for sustainability

THANK YOU eileen.gibney@ucd.ie