

Muscle protein synthesis rate Incorporation of diet-derived amino acids

Maastricht University

Groen et al., PLOS One 2016

Conclusions Muscle tissue remains responsive to anabolic effects of protein and exercise throughout life, but tailored approach is likely needed: Protein dose requirements for maintaining and increasing muscle mass and function are increased in elderly - Ingesting 1.2 – 1.5 g/kg body mass per day - Ingesting 25 – 30 g with each main meal - Ingesting protein close to physical activity and / or before sleep Protein supplementation can have isolated benefits for muscle mass and/or function Combining protein with exercise provides strongest stimulus for

Combining protein with exercise provides strongest stimulus for maintenance and even improvement of muscle mass and function.

