DAIRY MATRIX AND HEALTH FROM A HOLISTIC POINT OF VIEW

Dr Jean Michel Lecerf

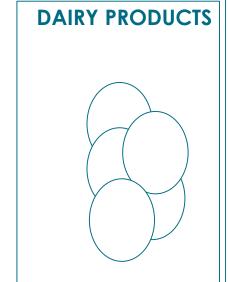
Nutrition Department Institut Pasteur de Lille

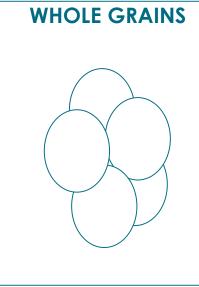
WE EAT FOODS NOT NUTRIENTS

THE SUM OF

FOODS SUCH AS

PROTEINS


+ CALCIUM


+ FATS

+ VITAMINS

IS DIFFERENT FROM

VIRGIN OILS

WHY?

IN FOODS

NUTRIENTS - ARE INTRICATED TOGETHER PROTEINS + MINERALS

> - ARE ASSOCIATED WITH OTHER COMPONENTS IN FERMENTED DAIRY - PROBIOTICS IN PLANT FOODS – POLYPHENOLS

- HAVE AN OTHER BIOAVAILABILITY

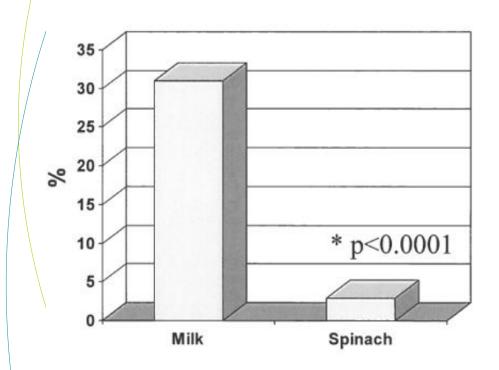
CALCIUM + LACTOSE

ZINC/IRON + PROTEINS 7

PHYTATES + MINERAL

OXALATES + CALCIUM >

FATTY ACIDS + CALCIUM >


INTERACTION **BIOAVAILABILITY FOOD STRUCTURE** COMPLEXITY

An example of matrix effect Calcium bioavailability

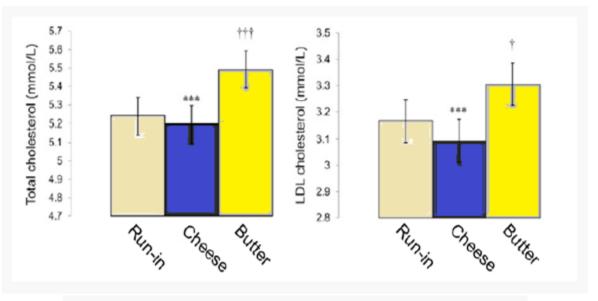
CALCIUM BIOAVAILABILITY VARIES ACCORDING TO FOOD SOURCES

Nickel et al. J Nutr 126:1406, 1996 Weaver and Heaney Calcif Tissue Int. 49:244, 1991

BIOAVAILABILITY OF DIETARY CALCIUM

		Calcium Content (mg)	Absorption Coefficient (%)	Absorbed Calcium (mg)
	250 ml milk	300	32	90
	550g kale	300	32	90
\ ,	150g spinach	300	< 5	15

Gueguen L.



An example of matrix effect Effect of saturated fatty acids from different dietary sources

THE FOOD MATRIX MODULATES THE EFFECT OF SFA

Changes in total and LDL cholesterol after consumption of ~80 g/d fat (~36g SFA) for 6 weeks as cheese or butter

Cheese vs butter ***P < 0.0001. *\delta \text{thit} Significantly different from run-in period: *\delta P < 0.05, *\delta P < 0.0005.

Hjerpsted J et al Am J Clin Nutr 2011;94: 1479-84

HIGH CALCIUM INTAKE INDUCES EXCRETION OF FAT AND DECREASES LDL-C

3 diets with the same amount of calories, fat and SFA

- control non dairy (Ca=500mg/d
- milk and cheese (Ca=1700mg/d)

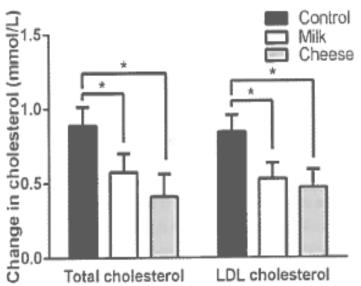


FIGURE 1. Mean \pm SD changes in total and LDL cholesterol after 2-wk consumption of control, milk, and cheese diets. *Total and LDL cholesterol after both milk and cheese diets differed from after the control diet in an ANOVA adjusted for the corresponding baseline variable, diet, and period (P < 0.05) (n = 15).

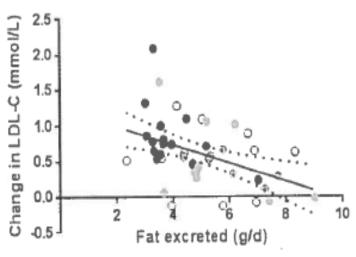
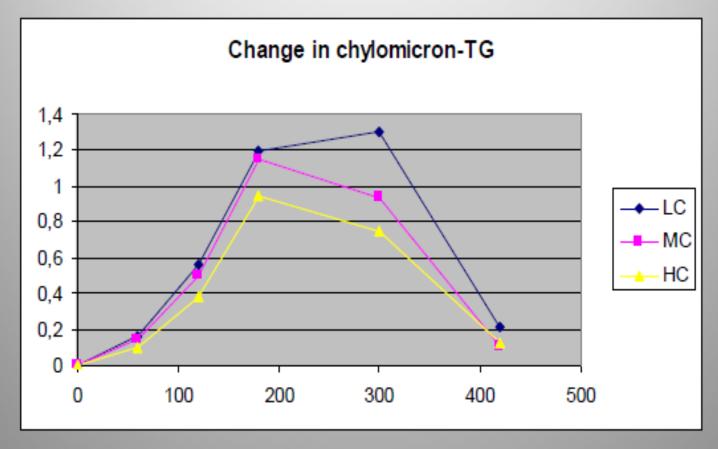



FIGURE 2. Correlations (95% CIs) between changes in LDL-C and fecal fat excretion during the control (black), milk (open), and cheese (gray) periods ($R^2 = 0.163$, P = 0.002) (n = 15). LDL-C, LDL cholesterol.

Soerensen KV et al Am J Clin Nutr 2014, 99, 984-91

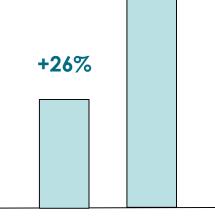
Dairy Calcium reduces fat absorption

Lorenzen JK, Astrup A. Am. J. Clin. Nutr. (2007)

n = 13

An example of matrix effect Dairy and CHD

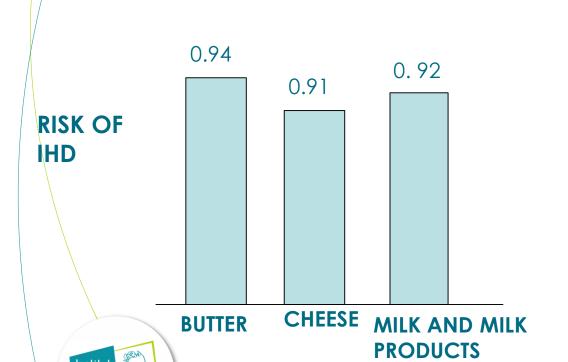
THE ASSOCIATION BETWEEN DIETARY SATURATED FATTY ACIDS AND CARDIOVASCULAR DISEASE DEPENDS ON THE SOURCE MEAT FAT


FOLLOW-UP 2000-2010

+5g/d +5% of energy

CVD RISK

deLille



de Oliveira Otto MC et al AJCN 2012, 96, 397-404

THE ASSOCIATION BETWEEN DIETARY SATURATED FATTY ACIDS AND ISCHEMIC HEART DISEASE DEPENDS ON THE SOURCE

THE EPIC – NETHERLANDS COHORT
35 597 SUBJECTS
FOLLOW-UP 12 YEARS

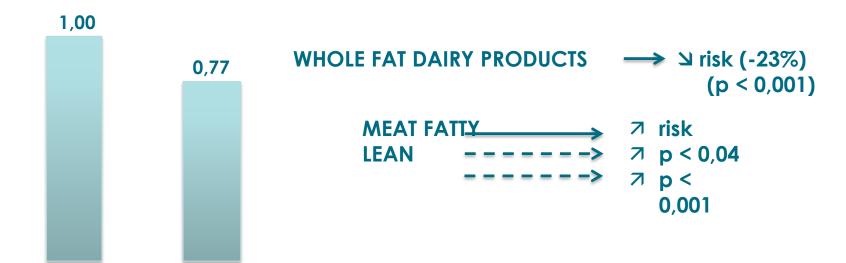
deLille

ROLE OF C4:0

C10:0

C15:0

C17:0


C14:0

NO SIGNIFICANT ASSOCIATION WITH SFA FROM MEAT

Praagman J et al. AJCN 2016, 103, 356-65

SOURCE OF FATTY ACID AND RISK OF TYPE 2 DIABETES

MALMO DIET AND CANCER COHORT 2693 subjects Follow-up 14 years

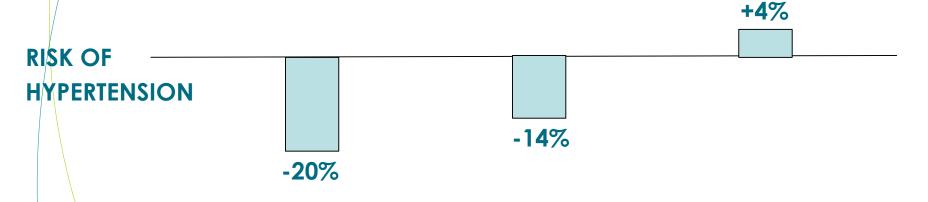
QUINTILES

WHOLE FAT DAIRY

PRODUCTS

Institut

delille


AJCN 2015, 101, 1065-80

PHOSPHORUS AND BLOOD PRESSURE

13 444 SUBJECTS

ARIC COHORT MESA STUDY

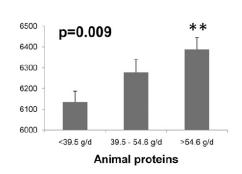
6,2 YEARS FOLLOW-UP

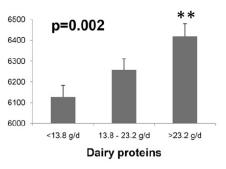
PHOSPHORUS INTAKE

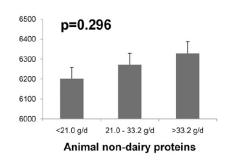
PHOSPHORUS FROM DAIRY PRODUCTS PHOSPHORUS FROM OTHER FOODS

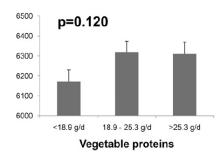
HYPERTENSION 2010, 55, 776-784

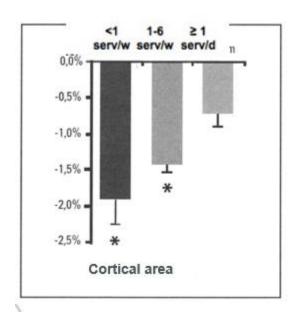
An example of matrix effect dairy and bone health

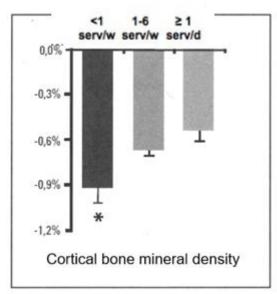



MATRIX EFFECT AND BONE


Bone microstructure and resistance is significantly associated to dairy protein intake and not to other protein sources


- 746 women; 65 years
- high resolution computerized tomography (distal tibia)




Durosier-Izard C et al. AJCN 2017; 105(2):513-525

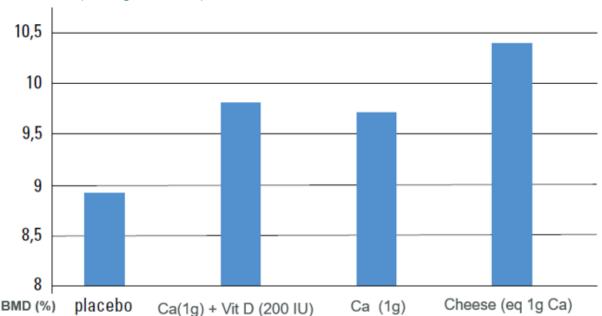
SPECIFIC MATRIX EFFECT OF FERMENTED DAIRY PRODUCTS

Bone loss is significantly less when yogurt intake is > 1/d independently of calcium, proteins and energy intake

- 482 post menopausal ♀
- Follow-up 3 ± 0.5 years

Biver E et al.Osteoporos. Int. 2018, 29, (8), 1771-82

MATRIX EFFECT OF DAIRY PRODUCTS ON THE BONE


Cheese is more efficient than calcium supplementation for bone mass accrual

195 girls 10-12 years; 2 years trial

Placebo

delille

- 1g calcium
- 1g calcium + 200 ui Vit. D
- Cheese (-> 1 g calcium)

THE MATRIX EFFECT: THE METABOLIC PROVE

- 12 healthy post menopausal women
- Randomized cross-over trial 2x6 weeks

4 servings /d milk and yogurt or same amount of Ca and Vit D from supplements

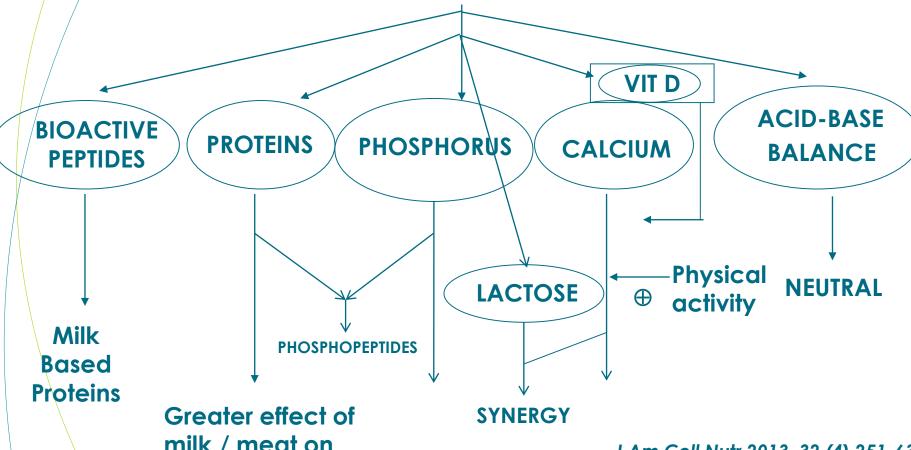
METABOLISM
WITH 41 Ca tracer

-BONE RESORPTION DECREASED IN BOTH PERIODS
-BONE FORMATION SIGNIFICANTLY INCREASED
IN THE DAIRY PERIOD ONLY (p = 0,03)
despite a lower calcium intake (-120 mg)

Demmer E et al .FASEB J. 2014, 28 (S1) abstract 1018.12

DAIRY PRODUCTS AND FEMORAL NECK FRACTURES

Nurses' Health Study 80600 women Health Professionnals Study 43306 men Follow-up 32 years – Every 4 years


	Milk (/ 240ml)	Cheese	Total Dairy Foods
M + W	-8%	-6%	-6%
w	-8%	-9% NS	-7%
M	-9% NS	+4%	-4%

NOT EXPLAINED BY
THE CALCIUM, VIT D
AND PROTEIN
CONTENT OF DAIRY
PRODUCTS
SUGGESTING THE
ROLE OF
INTERACTIONS
WITHIN THE DAIRY
MATRIX

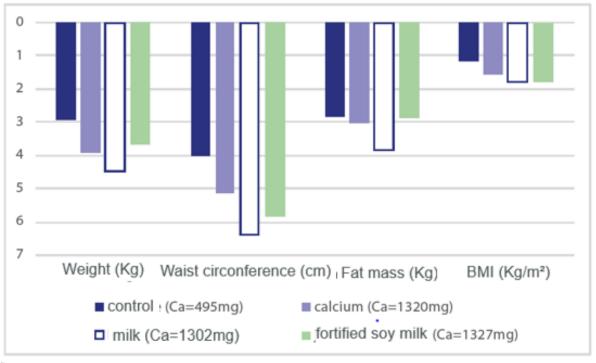
Feskanich D et al. Osteoporos Int 2018, 29, 2, 385-96

THE MILK MATRIX EFFECT ON BONE MULTIPLE MECHANISMS OF ACTION

milk / meat on bone turn-over

delille

J Am Coll Nutr 2013, 32 (4) 251-63 Nutr Rev 2005, 63, 361-73 AJCN 2007, 85, 1428-33


EJCN 2007, 61, 957-62

An example of matrix effect dairy and weight

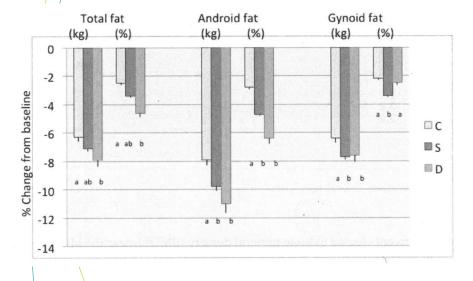
CALCIUM SOURCES AND WEIGHT LOSS

Clinical Trial: 64 overweight women, 8 weeks Hypocaloric diet + 1300 mg calcium (from supplement, milk or fortified soy milk)

Faghih SH et al. Nutr Metab Cardiovasc Dis. 2011;21: 499-503)

CALCIUM OR DAIRY FOODS AND BODY COMPOSITION

135 post menopausal overweight or obese women 6 months energy restricted weight loss study

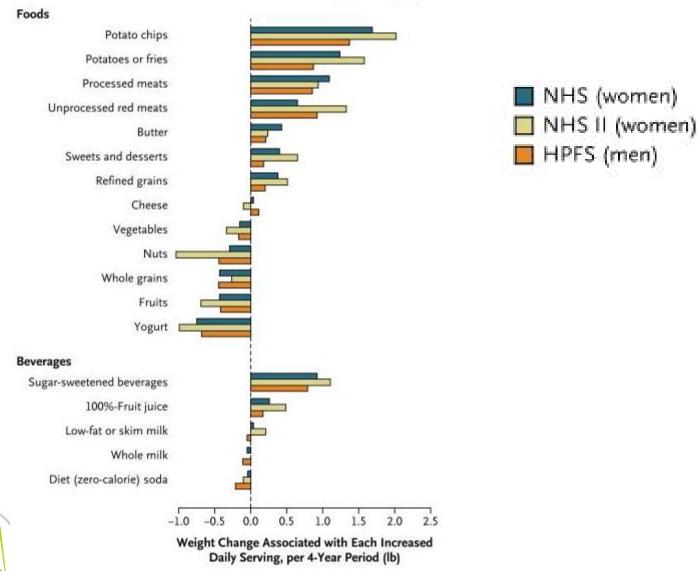

complemented

- low fat dairy foods (D)

- Ca + Vitamin D supplements (S)

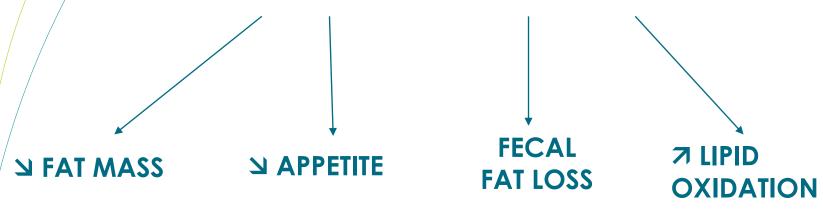
- Placebo (C)

	Kcal	Calcium
	1502	1170
s (S)	1368	1672
	1375	712


% Change from baseline

Nutrients (in press)

DAIRY PRODUCTS AND WEIGHT CHANGE

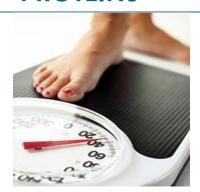

Mozaffarian D et al. NEJM 2011. 364(25): 2392-2404

Dairy matrix and health from a holistic point of view – Berlin 02-11-2019

Institut

Pasteur de Lille

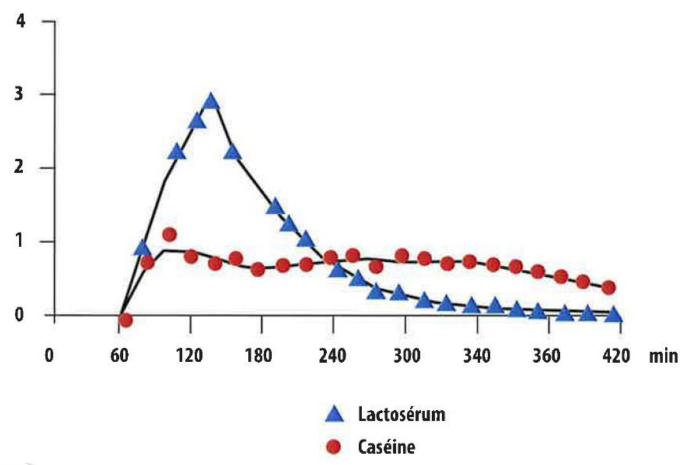
DAIRY PRODUCTS AND WEIGHT


MORE > WEIGHT IF CALORIC RESTRICTION

CALCIUM

PROTEINS

CLA and TRANS FA



Br J Nutr 2009, 101, 659-663 Br J Nutr 2011, 105, 133-143 EJCN 2012, 66, 622-7 EJCN 2012, 66, 1104-1109

An example of matrix effect dairy and sarcopenia

SLOW AND FAST PROTEINS IN THE SAME FOOD

THE PREVENTION OF SARCOPENIA

FAST (WHEY)

IGF1

+ FAT
MINERALS
VITAMINS
ENERGY
LACTOSE

de Lille

GOOD NUTRITION-

FUNCTION

J Am Coll Nutr 2013, 32, 251-63

‡m TOR

Muscle

SYNTHESIS

MORE THAN NUTRIENTS A MULTIFUNCTION FOOD

AN UNIQUE FOOD

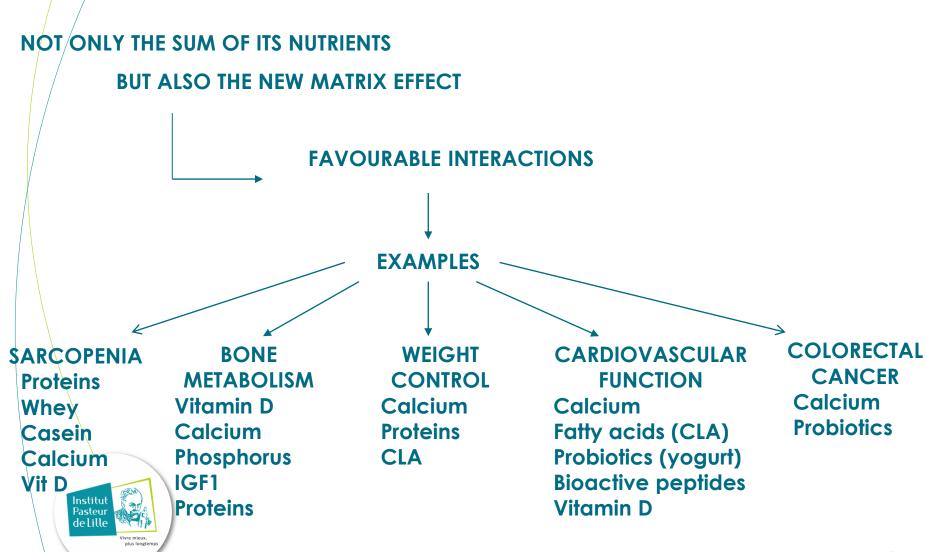
MULTIPLE FOODS

MILK YOGURT WHITE CHEESE CREAM CHEESE FERMENTED CHEESE

MULTIPLE NUTRIENTS

THE RICHEST FOOD
. VARIETY
. QUANTITY

MULTIPLE EFFECTS


BLOOD PRESCURE
WEIGHT
METABOLIC SYNDROME
TYPE 2 DIABETES
CARDIOVASCULAR RISK
BONE
MUSCLE
GROWTH...

MULTIPLES INTERACTIONS: THE « FOOD SYNERGY » OF D.R. JACOBS

AN UNIQUE FOOD

THE NEW MATRIX EFFECT

THE NEW DIETARY PYRAMID

NUTRIENTS

REFINED OR SKIMMED FOODS

WHOLE FOODS

FOOD GROUPS

COMPLEX MEAL

DIETARY PATTERNS

