Our Microbiome

Human ~10 trillion cells ~23 thousand genes

Microbiome ~100 trillion cells ~3 million genes

Why do we study the microbiome ?

FAURICULIURE AND FOOD DEVELOPMENT AUTHORITY

Gut Microbiome over a lifetime

What is a healthy microbiome ?

Diversity is Key

High Diversity

Low Diversity

Low total diversity within the gut microbiota is generally regarded as less desirable and has been observed in children that are more susceptible to allergies as well as sufferers of IBD, IBS and *C. difficile* infection (among others)

Exercise and the Microbiome

All et al., Casculture and Food Development Authority

(2016)

Rugby Microbiome

Elite Athletes n=40 Control BMI <25 n=23 Control BMI >28 n=23

Data collected

- Fasting blood sample (metabolic & inflammatory markers)
- Clinical bloods (CHOL, TG, fasting glucose etc.)
- Diet (FFQ)
- Body composition (DXA and W:H measurement)
- Faeces (microbial sequencing)

ORIGINAL ARTICLE

Exercise and associated dietary extremes impact on gut microbial diversity

Siobhan F Clarke,^{1,2,3} Eileen F Murphy,^{2,4} Orla O'Sullivan,¹ Alice J Lucey,⁵ Margaret Humphreys,⁶ Aileen Hogan,² Paula Hayes,² Maeve O'Reilly,^{2,4} Ian B Jeffery,^{2,3} Ruth Wood-Martin,⁷ David M Kerins,^{8,9} Eamonn Quigley,² R Paul Ross,^{1,2} Paul W O'Toole,³ Michael G Molloy,¹⁰ Eanna Falvey,^{10,11} Fergus Shanahan,^{2,10,12} Paul D Cotter^{1,2}

Diet -FFQ

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Microbial Diversity

asc

NT AUTHORITY

Correlation microbial diversity/ protein/exercise

Low BMI Controls

High BMI Controls

Athletes

Functional Diversity

The microbiome of professional athletes differs from that of sedentary subjects in composition and particularly at the functional metabolic level

Wiley Barton,^{1,2,3} Nicholas C Penney,^{4,5} Owen Cronin,^{1,3} Isabel Garcia Perez,⁴ Michael G Molloy,^{1,3} Elaine Holmes,⁴ Fergus Shanahan,^{1,3} Paul D Cotter,^{1,2} Orla O'Sullivan^{1,2}

SCFA Profile is Unique to Cohort

Metabolomics highlights

- Athletes in by-products of protein metabolism
- TMAO
- Carnitines
- Trimethylamine
- 3-hydroxy isovaleric acid

- creatine
- ✤ 3 methylhistidine

- ✤ Glutamine
- Lysine
- 4-pyridoxic acid

Can we "train" our gut microbes?

Data collected

- Fasting blood sample (metabolic & inflammatory markers)
- Clinical bloods (CHOL, TG, fasting glucose etc.)
- Diet (FFQ)
- Body composition (DXA and W:H measurement)
- Faeces (microbial sequencing)

Exercise improves health !!!!

	Exercise (E) Group (n=25)	Exercise + Protein (EP) Group (n=22)	Protein only (P) Group (n=27)	p-value
Weight (kg)	-0.9 (-2.6, 0.9)	-0.8 (-1.6, 0.1)	-0.5 (-1.3, 0.6)	0.549
BMI (kg/m ²)	-0.3 (-0.9, 0.2)	-0.2 (-0.6, 0)	-1.1 (-0.4, 0.2)	0.419
Resting heart rate (BPM)	- 5 (- 16, 6) ∞	-5 (-9, 3) ^Ψ	4 (-3, 10)	0.005*
Systolic BP (mmHg)	-8 (-12, 1)	-8 (-16, 0)	-4 (-11, 0)	0.545
Diastolic BP (mmHg)	-5 (-12, 1)	-6 (-9, -2)	-5 (-8, 0)	0.785
Waist:Hip ratio	-0.01 (-0.03, 0.01)	-0.02 (-0.04, 0.01)	0 (-0.01, 0.04)	0.07
Body fat (%)	-1.3 (-2.4, -0.5) ∞	-0.8 (-1.7, -0.5) $^{\Psi}$	0.5 (-0.2, 1)	<0.001*
Fat mass (kg)	-0.9 (-1.5, -2.7) ∞	-0.8 (-1.2, -0.4) ^Ψ	0.4 (-0.5, 0.9)	<0.001*
Fat mass (trunk) (kg)	-0.5 (-1, 02) ∞	-0.6 (-0.8, -1) ^Ψ	0.1 (-0.4, 0.6)	0.001*
Lean tissue mass (kg)	0.7 (0.3, 1.8) ∞	0.5 (-0.4, 1.1) ^Ψ	-0.2 (-0.9, 0.3)	0.001*
Weekly PA (METS)	1,159 (712, 1,964) ∞	1,265 (434, 2,487) ^Ѱ	111 (-244, 634)	<0.001*
Weekly PA (kCals)	1,442 (818, 2,628) ∞	1,789 (571, 3,289) ^Ψ	184 (-418, 800)	<0.001*
Sitting time (hours per week)	-5 (-17, 2)	-12 (-30, 1)	-5 (-18, 1)	0.407
Motorized transport (hours per week)	0 (-3.3, 2.8)	0 (-1, 1.3)	0.1 (-0.4, 5)	0.519

Between-group differences in post-intervention changes were compared using Kruskal-Wallis tests (p-values shown). When significantly different a Mann-Whitney U test was applied to determine between which groups the difference existed.

 ∞ indicates a difference between E and P groups. Ψ indicates a difference between EP and P groups (All

Diet

Subtle Changes in Microbiome

Viral Diversity

в	Taxono (Exe	omy - Virus Species rcise and Protein)				
tt (0.134)		0.6				
1. Group	Domain	ANCOM Detected Features (FDR = 0.05)	Pre-treatment RA	Post-treatment RA	Whey Powder RA	Supplement Control RA
		s_Lactococcus_phage_Tuc2009	0.000499917	0.002095861	0.002071575	0
		s_Lactococcus_phage_TP901.1	0.000166639	0.0015426	0.000980502	0
		s_Lactococcus_phage_340	0.008536341	0.243830028	0.003362651	0.000596659
		s_Lactococcus_phage_jm2	0.008406096	0.037533828	0.001866694	0
		s_Lactococcus_phage_jm3	0.006220945	0.03575589	0.001139854	0
		s_Lactococcus_phage_P680	0.015701368	0.140042772	0.001845555	0
		s_Lactococcus_phage_phi7	0.008339229	0.036861977	0.001156114	0.000596659
		sStreptococcus_phage_Alq132	0.001808553	0.009054736	0.08402562	0.005966587
EP)	Virus	sStreptococcus_phage_Sfi19	0.002491731	0.004525762	0.054496732	0.002386635
ein (VIIUS	sStreptococcus_phage_DT1	0.008555464	0.019793861	0.207416043	0.010143198
rote		sStreptococcus_phage_7201	0.003592347	0.009275997	0.158168168	0.007159905
Ъ		sStreptococcus_phage_Abc2	0.003863716	0.015320872	0.123153022	0.008353222
e ar		sLactococcus_phage_SK1	0.000892074	0.008264603	0.000349599	0
rcis		s_Lactococcus_phage_bIL170	0.005030033	0.041632521	0.001048796	0.000596659
Exe		sLactococcus_phage_P008	0.002543755	0.040451612	0.001121968	0
		s_Lactococcus_phage_712	0.001866797	0.018814728	0.001808157	0
		sLactococcus_phage_jj50	0.001058712	0.013484408	0.000403258	0
		s_Lactococcus_phage_bIBB29	0.006197035	0.038155223	0.000832533	0
		sVibrio_anguillarum	6.43857E-06	1.32543E-05	2.00236E-06	5.00103E-06
	Pactoria	sFervidobacterium_pennivorans	6.73413E-06	1.07671E-05	0	1.25026E-06
	bacteria	sStreptococcus_thermophilus	0.000742779	0.001276861	0.309245576	0.000563866
		sLactococcus_lactis	0.000161433	0.000344833	0.299223083	0.000635131
	Archaea	No significant OTUs detected	NA	NA	NA	NA
	First Principa	I Component (0.34) Density				

Summary- ExMET

eazaso

GRICULTURE AND FOOD DEVELOPMENT AUTHORI

- Exercising groups had increased fitness and reduced body fat
- Does not induce significant alteration in gut bacterial and archaea diversity : too short an intervention ???
- Virus carry-over with whey protein
- Athlete microbiome ≠ Exercise microbiome

A STEP TOWARDS PERSONALIZED MEDICINE FOR ATHLETES

Improved body composition

Improved cardiorespiratory fitness

	Values					
	Participant 1 (Marathoner)		Participa (Triathle			
Patient	T ₀	T ₁₄	Δ	T ₀	T ₁₄	Δ
characteristics	20					
Age (years)	50		_	22		_
Height (cm)	181			182	·	
Weight (kg)	93.8	89.2	-4.6	104.9	103.4	-1.5
BMI (kg/m ²)	28.6	27.2	-1.4	31.7	31.2	-0.5
Waist:Hip ratio	0.92	0.92	0.0	0.95	.91	-0.04
Body fat (%)	25.6	21.7	-3.9	34.7	34.5	-0.2
Fat mass (kg)	23.9	19.4	-4.6	36.3	35.7	-0.6
Fat mass (trunk) (kg)	14.8	11.7	-3.1	20.9	20.4	-0.5
Lean tissue mass (kg)	65.6	6 5.9	0.2	64.97	64.2	-0.7
Estimated VO _{2max} (mls/kg/min)	41.1	46.6	5.5	33.6	38	4.4
Max HR (bpm)	183	179	-4	196	179	-17
Resting HR (bpm)	69	50	-19	58	72	-2
Systolic BP (mmHg)	122	116	-6	128	127	-1
Diastolic BP (mmHg)	77	75	-2	87	72	-15
Weekly PA (IPAQ, METS)	891.5			646.5		_
Weekly PA (IPAQ, kCals)	1,393.7			1,130.3		

Diversity of Bacteria Species

Impacts of an Ironman on gut health

Intra- and inter-individual diversity of bacterial species were unaltered following race completion

Changes in pre- to post-race bile short chain fatty acids and bile acids including reductions in secondary and free bile acids and reductions in butyric and pivalic acids

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

24

Fecal Butyrate Following an Ironman Triathlon

IRON AN

INDIANA

Race Time

Butyrate is elevated in veteran triathletes & associated with race time

	s Victivallis vadensis		· · ·		
	s Slackia isoflavoniconvertens				
			· · · · · ·		
	SRummococcus_sp_CAG_466		1		
	SPrevotella_stercorea			1990 - Sec.	
	s_Prevotella_sp_CAG_873		· · ·		
	sPrevotella_sp_CAG_5226 -				
	s_Prevotella_sp_CAG_520 -				
	sPrevotella_sp_CAG_1092 -				
	sPrevotella_sp_AM42_24 -				
	sPrevotella_sp_885 -				
	sMethanobrevibacter_smithii -		• • •		
S	Lachnospiraceae_bacterium_2_1_46FAA		•••		
	s_Lachnoclostridium_sp_An138 -		•		
	sFirmicutes_bacterium_CAG_83 -			•	Finish_time
	sFirmicutes_bacterium_CAG_791 -				• A
es	sFirmicutes_bacterium_CAG_534 -				• B
bec	sFirmicutes_bacterium_CAG_238 -		•••		• C
S	sFirmicutes_bacterium_CAG_170 -				• D
	sFirmicutes_bacterium_CAG_145 -		••		• E
	sEubacterium_sp_CAG_251 -		• •	••	• F
	sEubacterium_eligens -	•	· · · · · · · · · · · · · · · · · · ·		
	sDesulfovibrionaceae_bacterium -	•	• • • •		
	sClostridium_sp_CAG_632 -				
	sClostridium_sp_CAG_58 -		· · · ·		
	sClostridium_sp_CAG_299 -		• •		
	sClostridium_sp_CAG_242 -		· · · ·		
	sCatenibacterium_mitsuokai -			• •	
s(Candidatus_Gastranaerophilales_bacterium -		· • · · · · · ·		
	sBlastocystis_sp_subtype_1 -		· · · ·		
	sBacteroides_vulgatus -	•	• • •	· · · · · · · · · · · · · · · · · · ·	
	sBacteroides_sp_CAG_144 -	1			
_	sBacteroides_eggerthii -		•		
ſ	sAkkermansia_muciniphila -		· · · · ·	· • *	
\Box		1e-01	1e+01	1e+03	

Certain microbial taxa are associated with race finis time

> A = 9 hcB= 10 h C= 11 h D= 12 ł E= 13 h F= 14 h

79 bacterial species -*M. smithii* (14hrs)

--

A. muciniphila (12hrs)

The Travelling Athlete

travel

LB

post travel

India

O'Donovan et al, Travel Medicine and Infectious Disease, 2019, Under Review

Decrease in microbial diversity post India

Microbial stability

Functional Analysis

Antibiotic resistance gene profiles

Conclusions

- Travel and associated dietary alterations impacts the gut microbiome.
- Microbiome is stable in those who didn't report GI distress.
- In athletes who reported GI distress there was an increase in Antibiotic resistance and virulence genes.
- Scope to test the use of prophylactic probiotic.

Why study microbiome for performance

- Non-invasive measure of health
- changes following illness/medication use
- Pre-empt impacts of stress, diet, travel, sleep patterns injury etc.
- Supports the effectiveness of dietary interventions
- Monitor GI distress

Fitness and gut health

- Prof. Paul Cotter
- Prof. Fergus Shanahan
- Dr. Fiona Crispie
- Dr. Peter Skuse
- Dr. Sharon Madigan
- Prof. Mick Molloy
- Eanna Falvey
- Dr. Eileen Murphy
- Trevor Woods
- Helena Nugent
- Dr. Siobhan Clarke
- Dr. Ciara O'Donovan
- Dr. Wiley Barton

Acknowledgements

IRON AN

IronMan study

- Dr. Jamie Pugh
- Dr. Greg Grosicki
- Dr. Susan Joyce
- Prof Graeme Close
- Karina Quitler
- Dr. Laura Wosniska

All athletes both elite and non

Metabolomics (Imperial College London) Prof. Elaine Holmes Dr. Nicholas Penney Dr. Isabel Garcia-Perez

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY