

Nutrition and Blood Pressure: A role for B vitamins?

Mary Ward PhD, RD Northern Ireland Centre for Food and Health, University of Ulster, Coleraine.

Outline

Hypertension – prevalence and consequences

Diet and Blood Pressure

Emergence of novel risk factors

A role for riboflavin?

Conclusions

Hypertension

 UK has one of the highest rates of death from cardiovascular disease (CVD)¹

 Hypertension - most common medical condition in the UK that affects up to 40% of the population

 Positive and continuous relationship between blood pressure and CVD mortality²

1 Cannon *et al.* 2007 *GP Review*, 1-7. 2 Prospective Studies Collaboration 2002 *Lancet* 360,1903-1913. Hypertension is defined as a blood pressure (BP) of greater than 140/90 mmHg³

 Multiple lifestyle, genetic and nutritional factors known to affect BP yet it remains a global problem

3 National Institute for Health and Clinical Excellence 2004

Hypertension: risk factors

- Age
- Family history
- Race
- Gender

- Dietary factors
- Obesity
- Inactivity
- Smoking

Dietary approaches to lower BP

Reduced Salt Intake

Weight reduction

DASH diet

Alcohol

Salt

- An increased salt intake is positively associated with an increased risk of stroke and cardiovascular disease
- Decrease of 2mmHg in SBP / 1mmHg in DBP in response to a reduction in salt intake from 10 to 6g/d
- Evidence to support a modest benefit of salt reduction in terms of cardiovascular health

Dietary Approaches to Stop Hypertension

- <u>High</u> in fruit and vegetables, low fat dairy, wholegrain foods and <u>low</u> in saturated fat and refined sugar
- Rich in potassium, magnesium, calcium and fibre
- Associated with a decrease of 5mmHg SBP and 3.0mmHg in DBP – greater effect in hypertensive's

Weight reduction

- Obesity remains a major public health challenge – approx 60% overweight / obese in NI
- Mean decrease of 4.4mmHg in SBP of 3.6mmHg in DBP in response to a weight decrease of 5kg
- Long term effects of sustained weight loss unknown

Novel risk factors

Homocysteine

- Homocysteine is an amino acid formed via the metabolism of dietary methionine
- Elevated total plasma homocysteine (>15µmol/l) has been observed to be an independent risk factor for CVD⁴ and stroke⁵
- Homocysteine levels are determined by both nutritional and genetic factors
- 4 Wald *et al.* 2002 *BMJ* 325, 1202.
 5 Yang *et al.* 2006 *Circulation* 113, 1335-1343.

MTHFR

- Main genetic determinant of elevated homocysteine is the 677C→T polymorphism in the enzyme methylenetetrahydrofolate reductase (MTHFR)
- Homozygosity (TT genotype) present in 10% of Western populations and results in decreased enzyme activity and increased homocysteine levels
- Individuals with the TT genotype are at significantly higher risk of CVD and stroke⁶ and emerging evidence suggests it may be independently linked with BP⁷

6 Lewis *et al.* 2005 *BMJ* 331, 1053. 7 Heux et al. 2004 *Hypertens Res* 27, 663–667.

MTHFR 677C→T and BP

Nishio *et al.* 1996 observed a graded relationship between BP and the number of T alleles ⁸

8 Nishio et al. 1996 Jpn J Hum Genet 41(2), 247-251.

MTHFR 677C→*T* and BP

Author	Study Design	n	TT	MTHFR & BP
Guillen <i>et al.</i> 2001	Observational	716	113	+ (SBP) & Graded
Inamoto <i>et al.</i> 2003	Observational	3247	508	+ (DBP)
Jiang <i>et al.</i> 2004	Intervention	444	106	+ (DBP)
Heux <i>et al.</i> 2004	Case:Control	500	60	+ (HTN)
Benes <i>et al.</i> 2001	Case:Control	1119	121	+(HTN-CAD)
Ravera <i>et al.</i> 2001	Observational	206	36	No relationship
Nakata <i>et al.</i> 1998	Case:Control	357	55	- (HTN)

MTHFR and B-vitamins

- Individuals with the TT genotype are particularly sensitive to B-vitamin statu⁹
- Decreased activity of the MTHFR enzyme seen in the TT genotype appears to be explained by the loss of the riboflavin cofactor¹⁰
- Riboflavin status is a potent modulator of homocysteine levels in individuals with the TT genotype¹¹

9 Hustad *et al.* 2007 *The American Journal of Human Genetics*, 80(5), 846-855.
10 Guenther *et al.* 1999 *Nat Struct Biol* 6(4), 359-365.
11 McNulty *et al.* 2006 *Circulation* 113(1), 74-80

Genotype-specific response to riboflavin

* p<0.05 denotes significance determined by independent t-tests split by treatment

12 McNulty et al. 2006 Circulation 113(1), 74-80

B-vitamins and BP

Author	n (TT)	B-vitamins	Duration	Hcy response	BP response
Williams <i>et al.</i> 2005	41 (5)	FA (5mg/d)	3 weeks	↓*	No effect (SBP:DBP) ↓* Pulse Pressure
Markan <i>et al.</i> 2007	153 (<mark>8</mark>)	FA (5mg/d)	4 weeks	↓ *	No effect (SBP:DBP)

No published study to date has:

- Used TT genotype-driven recruitment

OR

- Considered the B-vitamin riboflavin

MTHFR and BP: a role for riboflavin

Study Design

Influence of the TT genotype on BP by status of riboflavin

		<i>MTHFR</i> 677C→T Genotype			
		CC n=67	CT n=76	TT n=54	P ¹
Systolic Blood Pressure	Total	131.1 ^a	133.0ª	142.8 ^b	0.002
(mmHg)	Lower riboflavin ²	131.2 ^a	135.8ª	147.4 ^b	0.005
	Higher riboflavin	131.0	129.6	138.6	0.172
Diastolic Blood Pressure	Total	80.3 ^a	83.3 ^{ab}	86.0 ^b	0.038
(mmHg)	Lower riboflavin	80.8	84.6	88.1	0.076
	Higher riboflavin	79.6	81.9	84.1	0.381

BP response to riboflavin intervention(1.6mg/d) split by genotype

* Statistical significance (*p*<0.05) determined by independent t-tests on BP change 13 Horigan *et al.* 2010 *J Hypertension* - At baseline individuals with the TT genotype had significantly higher BP compared to those with the CT or CC genotype

- Riboflavin supplementation (1.6mg/d) for 16 weeks produced a genotype-specific BP lowering

Follow-up study

 Reinvestigation of premature CVD patients with different *MTHFR* genotypes

Observational study

Cross-over intervention study

Study design and completion rates

Baseline characteristics of follow-up cohort

	2004 All n=83	2008 All n=83
Age (y)	53.9 (5.6)	58.2 (5.6)
BP (mmHg)	136 / 82	133 / 79
BMI (kg/m²)	29.2 (4.9)	29.8 (5.2)
Waist (cm)	96.4 (13.0)	104.8 (13.6)
Smoker (%)	25	22

Baseline SBP by MTHFR genotype

Differences between genotype groups at each time point determined by 1-way ANOVA and Tukey post hoc test (p<0.05)

Intervention Protocol

- TT genotype was confirmed as a genetic risk factor for hypertension in this high-risk cohort
- CVD patients with the MTHFR 677 TT genotype remained hypertensive at follow-up despite marked changes in antihypertensive therapy;
- Only riboflavin treatment significantly decreased BP (*by* 9mmHg SBP and 6mmHg DBP) over the 4-year period;
- A 2 mmHg decrease in SBP is estimated to decrease stroke mortality by 10%²

² Prospective Studies Collaboration 2002 Lancet 360,1903-1913.

Implications for the food industry

Dietary sources of riboflavin

Fortified foods

Personalised nutrition

Conclusions: Diet and Blood Pressure

- In Obese individuals clear benefits of weight reduction
- In Hypertensive's a reduced salt intake and DASH diet are proven to be effective
- In this genetically at-risk group riboflavin is an important determinant of blood pressure

Research Team

NICHE Dr Geraldine Horigan Dr Carol Wilson Prof Sean Strain Prof Helene McNulty

Collaborators in TCD Prof John Scott Dr Anne Molloy

Clinical Collaborators in Cardiovascular Research Dr Tom Trouton, Antrim Area Hospital Dr John Purvis, Altnagelvin Area Hospital

Partly funded by NI Chest Heart and Stroke Association